Yang Ming , Shan Wang , Chenhao Wang , Hang Liu , Yutong Deng , Yi Zhao , Jie Feng
{"title":"VCSA:使用对称同态加密为联合学习提供可验证、抗串通的安全聚合","authors":"Yang Ming , Shan Wang , Chenhao Wang , Hang Liu , Yutong Deng , Yi Zhao , Jie Feng","doi":"10.1016/j.sysarc.2024.103279","DOIUrl":null,"url":null,"abstract":"<div><div>As a novel distributed learning framework for protecting personal data privacy, federated learning, (FL) has attained widespread attention through sharing gradients among users without collecting their data. However, an untrusted cloud server may infer users’ individual information from gradients and global model. In addition, it may even forge incorrect aggregated results to save resources. To deal with these issues, despite that the existing works can protect local model privacy and achieve verifiability of aggregated results, they are defective in protecting global model privacy, guaranteeing verifiability if collusion attacks occur, and suffer from high computation cost. To further tackle the above challenges, a verifiable and collusion-resistant secure aggregation scheme for FL is proposed, named VCSA. Concretely, we combine symmetric homomorphic encryption with single masking to protect model privacy. Meanwhile, we adopt verifiable multi-secret sharing and generalized Pedersen commitment to achieve verifiability and prevent users from uploading incorrect shares. Furthermore, high model accuracy can be ensured even if some users go offline. Security analysis illustrates that our VCSA enhances the security of FL, realizes verifiability despite collusion attacks and robustness to dropout. Performance evaluation displays that our VCSA can reduce at least 28.27% and 79.15% regarding computation cost compared to existing schemes.</div></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"156 ","pages":"Article 103279"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VCSA: Verifiable and collusion-resistant secure aggregation for federated learning using symmetric homomorphic encryption\",\"authors\":\"Yang Ming , Shan Wang , Chenhao Wang , Hang Liu , Yutong Deng , Yi Zhao , Jie Feng\",\"doi\":\"10.1016/j.sysarc.2024.103279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a novel distributed learning framework for protecting personal data privacy, federated learning, (FL) has attained widespread attention through sharing gradients among users without collecting their data. However, an untrusted cloud server may infer users’ individual information from gradients and global model. In addition, it may even forge incorrect aggregated results to save resources. To deal with these issues, despite that the existing works can protect local model privacy and achieve verifiability of aggregated results, they are defective in protecting global model privacy, guaranteeing verifiability if collusion attacks occur, and suffer from high computation cost. To further tackle the above challenges, a verifiable and collusion-resistant secure aggregation scheme for FL is proposed, named VCSA. Concretely, we combine symmetric homomorphic encryption with single masking to protect model privacy. Meanwhile, we adopt verifiable multi-secret sharing and generalized Pedersen commitment to achieve verifiability and prevent users from uploading incorrect shares. Furthermore, high model accuracy can be ensured even if some users go offline. Security analysis illustrates that our VCSA enhances the security of FL, realizes verifiability despite collusion attacks and robustness to dropout. Performance evaluation displays that our VCSA can reduce at least 28.27% and 79.15% regarding computation cost compared to existing schemes.</div></div>\",\"PeriodicalId\":50027,\"journal\":{\"name\":\"Journal of Systems Architecture\",\"volume\":\"156 \",\"pages\":\"Article 103279\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Architecture\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383762124002169\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762124002169","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
VCSA: Verifiable and collusion-resistant secure aggregation for federated learning using symmetric homomorphic encryption
As a novel distributed learning framework for protecting personal data privacy, federated learning, (FL) has attained widespread attention through sharing gradients among users without collecting their data. However, an untrusted cloud server may infer users’ individual information from gradients and global model. In addition, it may even forge incorrect aggregated results to save resources. To deal with these issues, despite that the existing works can protect local model privacy and achieve verifiability of aggregated results, they are defective in protecting global model privacy, guaranteeing verifiability if collusion attacks occur, and suffer from high computation cost. To further tackle the above challenges, a verifiable and collusion-resistant secure aggregation scheme for FL is proposed, named VCSA. Concretely, we combine symmetric homomorphic encryption with single masking to protect model privacy. Meanwhile, we adopt verifiable multi-secret sharing and generalized Pedersen commitment to achieve verifiability and prevent users from uploading incorrect shares. Furthermore, high model accuracy can be ensured even if some users go offline. Security analysis illustrates that our VCSA enhances the security of FL, realizes verifiability despite collusion attacks and robustness to dropout. Performance evaluation displays that our VCSA can reduce at least 28.27% and 79.15% regarding computation cost compared to existing schemes.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.