氰化物功能化离子液体改性聚合物作为高效和选择性回收金(III)的吸附剂

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Environmental Chemical Engineering Pub Date : 2024-09-24 DOI:10.1016/j.jece.2024.114238
Meng Cheng, Xingtai Yan, Wenjing Liu, Ruihua Li, Gangfu Song
{"title":"氰化物功能化离子液体改性聚合物作为高效和选择性回收金(III)的吸附剂","authors":"Meng Cheng,&nbsp;Xingtai Yan,&nbsp;Wenjing Liu,&nbsp;Ruihua Li,&nbsp;Gangfu Song","doi":"10.1016/j.jece.2024.114238","DOIUrl":null,"url":null,"abstract":"<div><div>Designing and synthesizing sustainable adsorbents for the separation and recovery of gold from waste resources has significant importance to alleviate the problems of the scarcity of resource and environmental pollution. Herein, a cyanide-functionalized ionic liquid-modified polymer (CPR-CN) was prepared by a simple one-step process for gold (Au(III)) recovery. The introduction of cyan group and cationic imidazolium ring gives CPR-CN significant adsorption ability with 1450.41 mg/g. Kinetics study suggested that the uptake of Au(III) onto CPR-CN could be commendably matched by the pseudo-second order kinetic model and it took only 10 min to reach adsorption equilibrium. The CPR-CN had a remarkable selectivity towards Au(III) for it presented much overwhelming affinity for Au(III) than that for other base metal ions such as K(I), Co(II), Cu(II), Ca(II), Mg(II), Al(III) and Fe(III), thus it was successfully applied to recover Au(III) from e-waste leaching solution. Besides, the CPR-CN displayed preferable reusability, and the possible mechanism of CPR-CN for Au(III) was investigated with the aid of several characterization techniques. These performance of CPR-CN indicates it can serve as an attractive adsorbent to efficiently and selectively separate and recover Au(III) from waste.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114238"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyanide-functionalized ionic liquid-modified polymer as an adsorbent for highly efficient and selective recovery of Au(III)\",\"authors\":\"Meng Cheng,&nbsp;Xingtai Yan,&nbsp;Wenjing Liu,&nbsp;Ruihua Li,&nbsp;Gangfu Song\",\"doi\":\"10.1016/j.jece.2024.114238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Designing and synthesizing sustainable adsorbents for the separation and recovery of gold from waste resources has significant importance to alleviate the problems of the scarcity of resource and environmental pollution. Herein, a cyanide-functionalized ionic liquid-modified polymer (CPR-CN) was prepared by a simple one-step process for gold (Au(III)) recovery. The introduction of cyan group and cationic imidazolium ring gives CPR-CN significant adsorption ability with 1450.41 mg/g. Kinetics study suggested that the uptake of Au(III) onto CPR-CN could be commendably matched by the pseudo-second order kinetic model and it took only 10 min to reach adsorption equilibrium. The CPR-CN had a remarkable selectivity towards Au(III) for it presented much overwhelming affinity for Au(III) than that for other base metal ions such as K(I), Co(II), Cu(II), Ca(II), Mg(II), Al(III) and Fe(III), thus it was successfully applied to recover Au(III) from e-waste leaching solution. Besides, the CPR-CN displayed preferable reusability, and the possible mechanism of CPR-CN for Au(III) was investigated with the aid of several characterization techniques. These performance of CPR-CN indicates it can serve as an attractive adsorbent to efficiently and selectively separate and recover Au(III) from waste.</div></div>\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":\"12 6\",\"pages\":\"Article 114238\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213343724023698\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724023698","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

设计和合成用于从废弃资源中分离和回收金的可持续吸附剂对于缓解资源匮乏和环境污染问题具有重要意义。本文采用简单的一步法制备了一种氰化物功能化离子液体改性聚合物(CPR-CN),用于金(Au(III))的回收。氰基和阳离子咪唑环的引入使 CPR-CN 具有显著的吸附能力,吸附量达到 1450.41 mg/g。动力学研究表明,CPR-CN 对 Au(III)的吸附符合伪二阶动力学模型,只需 10 分钟就能达到吸附平衡。CPR-CN 对 Au(III)具有显著的选择性,因为它对 Au(III)的亲和力远远超过对其他碱金属离子(如 K(I)、Co(II)、Cu(II)、Ca(II)、Mg(II)、Al(III)和 Fe(III))的亲和力,因此它被成功地应用于回收电子废物浸出液中的 Au(III)。此外,CPR-CN 还显示出较好的可再利用性,并借助多种表征技术研究了 CPR-CN 对 Au(III)的可能作用机理。CPR-CN 的这些性能表明,它可以作为一种有吸引力的吸附剂,从废物中高效、选择性地分离和回收金(III)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyanide-functionalized ionic liquid-modified polymer as an adsorbent for highly efficient and selective recovery of Au(III)
Designing and synthesizing sustainable adsorbents for the separation and recovery of gold from waste resources has significant importance to alleviate the problems of the scarcity of resource and environmental pollution. Herein, a cyanide-functionalized ionic liquid-modified polymer (CPR-CN) was prepared by a simple one-step process for gold (Au(III)) recovery. The introduction of cyan group and cationic imidazolium ring gives CPR-CN significant adsorption ability with 1450.41 mg/g. Kinetics study suggested that the uptake of Au(III) onto CPR-CN could be commendably matched by the pseudo-second order kinetic model and it took only 10 min to reach adsorption equilibrium. The CPR-CN had a remarkable selectivity towards Au(III) for it presented much overwhelming affinity for Au(III) than that for other base metal ions such as K(I), Co(II), Cu(II), Ca(II), Mg(II), Al(III) and Fe(III), thus it was successfully applied to recover Au(III) from e-waste leaching solution. Besides, the CPR-CN displayed preferable reusability, and the possible mechanism of CPR-CN for Au(III) was investigated with the aid of several characterization techniques. These performance of CPR-CN indicates it can serve as an attractive adsorbent to efficiently and selectively separate and recover Au(III) from waste.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
期刊最新文献
Research progress of simultaneous nitrogen and phosphorus removal adsorbents in wastewater treatment Recent progress of piezoelectric materials applied in photocatalytic CO2 reduction: A review Recent advances and future prospects of MXene-based photocatalysts in environmental remediations Layered double hydroxides as versatile materials for detoxification of hexavalent chromium: Mechanism, kinetics, and environmental factors Pyruvate-formate lyase and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1