基于语法生成用于设计钢筋混凝土结构的支撑和拉杆模型

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Structures Pub Date : 2024-09-25 DOI:10.1016/j.compstruc.2024.107549
Karin L. Yu , Michael A. Kraus , Eleni Chatzi , Walter Kaufmann
{"title":"基于语法生成用于设计钢筋混凝土结构的支撑和拉杆模型","authors":"Karin L. Yu ,&nbsp;Michael A. Kraus ,&nbsp;Eleni Chatzi ,&nbsp;Walter Kaufmann","doi":"10.1016/j.compstruc.2024.107549","DOIUrl":null,"url":null,"abstract":"<div><div>Reinforced concrete structures featuring discontinuity regions are complex to design and often susceptible to errors linked to numerical analysis methods. For such structural design problems, strut-and-tie models offer a simple, intuitive and safe design method based on the lower bound theorem of plasticity. Although intuitive, the derivation of strut-and-tie models requires nonnegligible effort and a certain degree of expertise to navigate the highdimensional design space. The automated generation of strut-and-tie models is nontrivial with existing optimisation-based methods, which struggle with accounting for fabrication aspects or incorporating user adaptations.</div><div>This paper presents a novel grammar-based approach for generating practical strut-and-tie models by representing them as graphs and constructing a graph grammar. It consists of rules customised to consider engineering judgement, significantly reducing the dimensionality of the design space. The sequential application of such rules allows for human-computer interaction and aids engineers in decision-making, while being kept in the loop. Parsing four common design examples from the literature demonstrates the efficacy of this approach. The developed designs are more practical compared with existing optimisation-based suggestions. This interpretable grammar-based approach closely follows the intuitive decision-making process of practising structural engineers, which could be adapted to support further structural engineering design tasks.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"305 ","pages":"Article 107549"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grammar-based generation of strut-and-tie models for designing reinforced concrete structures\",\"authors\":\"Karin L. Yu ,&nbsp;Michael A. Kraus ,&nbsp;Eleni Chatzi ,&nbsp;Walter Kaufmann\",\"doi\":\"10.1016/j.compstruc.2024.107549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reinforced concrete structures featuring discontinuity regions are complex to design and often susceptible to errors linked to numerical analysis methods. For such structural design problems, strut-and-tie models offer a simple, intuitive and safe design method based on the lower bound theorem of plasticity. Although intuitive, the derivation of strut-and-tie models requires nonnegligible effort and a certain degree of expertise to navigate the highdimensional design space. The automated generation of strut-and-tie models is nontrivial with existing optimisation-based methods, which struggle with accounting for fabrication aspects or incorporating user adaptations.</div><div>This paper presents a novel grammar-based approach for generating practical strut-and-tie models by representing them as graphs and constructing a graph grammar. It consists of rules customised to consider engineering judgement, significantly reducing the dimensionality of the design space. The sequential application of such rules allows for human-computer interaction and aids engineers in decision-making, while being kept in the loop. Parsing four common design examples from the literature demonstrates the efficacy of this approach. The developed designs are more practical compared with existing optimisation-based suggestions. This interpretable grammar-based approach closely follows the intuitive decision-making process of practising structural engineers, which could be adapted to support further structural engineering design tasks.</div></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":\"305 \",\"pages\":\"Article 107549\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794924002785\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924002785","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

具有不连续区域的钢筋混凝土结构设计复杂,而且经常容易受到数值分析方法误差的影响。对于此类结构设计问题,支撑-拉杆模型提供了一种基于塑性下界定理的简单、直观和安全的设计方法。虽然直观,但推导支撑-拉杆模型需要不可忽略的努力和一定程度的专业知识,才能在高维设计空间中游刃有余。通过现有的基于优化的方法,自动生成支撑和拉杆模型并非易事,因为这些方法很难考虑到制造方面或用户的适应性。本文提出了一种基于语法的新方法,通过将其表示为图形并构建图形语法,生成实用的支撑和拉杆模型。它由考虑工程判断而定制的规则组成,大大降低了设计空间的维度。这些规则的顺序应用允许人机交互,并帮助工程师做出决策,同时使其处于环路中。对文献中四个常见设计实例的解析证明了这种方法的有效性。与现有的基于优化的建议相比,所开发的设计更加实用。这种基于语法的可解释方法与实际结构工程师的直观决策过程密切相关,可用于支持更多的结构工程设计任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grammar-based generation of strut-and-tie models for designing reinforced concrete structures
Reinforced concrete structures featuring discontinuity regions are complex to design and often susceptible to errors linked to numerical analysis methods. For such structural design problems, strut-and-tie models offer a simple, intuitive and safe design method based on the lower bound theorem of plasticity. Although intuitive, the derivation of strut-and-tie models requires nonnegligible effort and a certain degree of expertise to navigate the highdimensional design space. The automated generation of strut-and-tie models is nontrivial with existing optimisation-based methods, which struggle with accounting for fabrication aspects or incorporating user adaptations.
This paper presents a novel grammar-based approach for generating practical strut-and-tie models by representing them as graphs and constructing a graph grammar. It consists of rules customised to consider engineering judgement, significantly reducing the dimensionality of the design space. The sequential application of such rules allows for human-computer interaction and aids engineers in decision-making, while being kept in the loop. Parsing four common design examples from the literature demonstrates the efficacy of this approach. The developed designs are more practical compared with existing optimisation-based suggestions. This interpretable grammar-based approach closely follows the intuitive decision-making process of practising structural engineers, which could be adapted to support further structural engineering design tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
期刊最新文献
Prediction of nonlinear dynamic responses and generation of seismic fragility curves for steel moment frames using boosting machine learning techniques Bearing capacity analysis of RC slabs under cyclic loads: Dual numerical approaches Material parameter sensitivity analysis for intralaminar damage of laminated composites through direct differentiation Theoretical study of multipoint ground motion characteristics under V-shaped site induced P1 wave Bridge roughness scanned by Dual-Wheeled 3D test vehicle and processed by augmented Kalman filter: Theory and application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1