A. Khatab, O.M. Lemine, N. Al Saqri, Mohamed H. Abdel-Kader, M. Henini
{"title":"在 (100)、(311)A 和 (311)B GaAs 基底上生长的 Ga1-xInxNyAs1-y/GaAs 双量子阱结构的生长后退火","authors":"A. Khatab, O.M. Lemine, N. Al Saqri, Mohamed H. Abdel-Kader, M. Henini","doi":"10.1016/j.physe.2024.116109","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of thermal annealing on the optical properties of In<sub>0.36</sub>Ga<sub>0.64</sub>As<sub>1-y</sub>N<sub>y</sub>/GaAs double quantum wells (QWs) grown on different GaAs planes was investigated for two sets of samples having y = 0 % and 1 % nitrogen. It was found that annealing at 700 °C for 30 seconds is the optimum annealing temperature which improves the photoluminesces (PL) efficiency for all QWs. The PL enhancement is larger in samples with 1 % nitrogen than 0 %. This PL improvement, which may be explained by the annihilation of defects introduced by the incorporation of nitrogen, is accompanied by a blue shift. Secondary ion mass spectroscopy (SIMS) shows that In/Ga intermixing, which occurs at the interface between QW and barrier, could account for the origin of this energy shift in QWs grown on (311)A and (100) planes. The amount of diffusion of In out of the QW depends on the growth plane. It is larger for QWs grown on (311)B plane as compared to the other planes. However, in contrast to the (311)B QWs the nitrogen content in the (100) and (311)A QWs doesn't change upon annealing.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116109"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post growth annealing of Ga1-xInxNyAs1-y/GaAs double quantum well structures grown on (100), (311)A, and (311)B GaAs substrates\",\"authors\":\"A. Khatab, O.M. Lemine, N. Al Saqri, Mohamed H. Abdel-Kader, M. Henini\",\"doi\":\"10.1016/j.physe.2024.116109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of thermal annealing on the optical properties of In<sub>0.36</sub>Ga<sub>0.64</sub>As<sub>1-y</sub>N<sub>y</sub>/GaAs double quantum wells (QWs) grown on different GaAs planes was investigated for two sets of samples having y = 0 % and 1 % nitrogen. It was found that annealing at 700 °C for 30 seconds is the optimum annealing temperature which improves the photoluminesces (PL) efficiency for all QWs. The PL enhancement is larger in samples with 1 % nitrogen than 0 %. This PL improvement, which may be explained by the annihilation of defects introduced by the incorporation of nitrogen, is accompanied by a blue shift. Secondary ion mass spectroscopy (SIMS) shows that In/Ga intermixing, which occurs at the interface between QW and barrier, could account for the origin of this energy shift in QWs grown on (311)A and (100) planes. The amount of diffusion of In out of the QW depends on the growth plane. It is larger for QWs grown on (311)B plane as compared to the other planes. However, in contrast to the (311)B QWs the nitrogen content in the (100) and (311)A QWs doesn't change upon annealing.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"165 \",\"pages\":\"Article 116109\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724002133\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002133","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Post growth annealing of Ga1-xInxNyAs1-y/GaAs double quantum well structures grown on (100), (311)A, and (311)B GaAs substrates
The effect of thermal annealing on the optical properties of In0.36Ga0.64As1-yNy/GaAs double quantum wells (QWs) grown on different GaAs planes was investigated for two sets of samples having y = 0 % and 1 % nitrogen. It was found that annealing at 700 °C for 30 seconds is the optimum annealing temperature which improves the photoluminesces (PL) efficiency for all QWs. The PL enhancement is larger in samples with 1 % nitrogen than 0 %. This PL improvement, which may be explained by the annihilation of defects introduced by the incorporation of nitrogen, is accompanied by a blue shift. Secondary ion mass spectroscopy (SIMS) shows that In/Ga intermixing, which occurs at the interface between QW and barrier, could account for the origin of this energy shift in QWs grown on (311)A and (100) planes. The amount of diffusion of In out of the QW depends on the growth plane. It is larger for QWs grown on (311)B plane as compared to the other planes. However, in contrast to the (311)B QWs the nitrogen content in the (100) and (311)A QWs doesn't change upon annealing.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures