{"title":"一岁内语言声音特征神经编码机制的纵向轨迹","authors":"Marta Puertollano , Teresa Ribas-Prats , Natàlia Gorina-Careta , Siham Ijjou-Kadiri , Sonia Arenillas-Alcón , Alejandro Mondéjar-Segovia , María Dolores Gómez-Roig , Carles Escera","doi":"10.1016/j.bandl.2024.105474","DOIUrl":null,"url":null,"abstract":"<div><div>Infants quickly recognize the sounds of their mother language, perceiving the spectrotemporal acoustic features of speech. However, the underlying neural machinery remains unclear. We used an auditory evoked potential termed frequency-following response (FFR) to unravel the neural encoding maturation for two speech sound characteristics: voice pitch and temporal fine structure. 37 healthy-term neonates were tested at birth and retested at the ages of six and twelve months. Results revealed a reduction in neural phase-locking onset to the stimulus envelope from birth to six months, stabilizing by twelve months. While neural encoding of voice pitch remained consistent across ages, temporal fine structure encoding matured rapidly from birth to six months, without further improvement from six to twelve months. Results highlight the critical importance of the first six months of life in the maturation of neural encoding mechanisms that are crucial for phoneme discrimination during early language acquisition.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Longitudinal trajectories of the neural encoding mechanisms of speech-sound features during the first year of life\",\"authors\":\"Marta Puertollano , Teresa Ribas-Prats , Natàlia Gorina-Careta , Siham Ijjou-Kadiri , Sonia Arenillas-Alcón , Alejandro Mondéjar-Segovia , María Dolores Gómez-Roig , Carles Escera\",\"doi\":\"10.1016/j.bandl.2024.105474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Infants quickly recognize the sounds of their mother language, perceiving the spectrotemporal acoustic features of speech. However, the underlying neural machinery remains unclear. We used an auditory evoked potential termed frequency-following response (FFR) to unravel the neural encoding maturation for two speech sound characteristics: voice pitch and temporal fine structure. 37 healthy-term neonates were tested at birth and retested at the ages of six and twelve months. Results revealed a reduction in neural phase-locking onset to the stimulus envelope from birth to six months, stabilizing by twelve months. While neural encoding of voice pitch remained consistent across ages, temporal fine structure encoding matured rapidly from birth to six months, without further improvement from six to twelve months. Results highlight the critical importance of the first six months of life in the maturation of neural encoding mechanisms that are crucial for phoneme discrimination during early language acquisition.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093934X2400097X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093934X2400097X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Longitudinal trajectories of the neural encoding mechanisms of speech-sound features during the first year of life
Infants quickly recognize the sounds of their mother language, perceiving the spectrotemporal acoustic features of speech. However, the underlying neural machinery remains unclear. We used an auditory evoked potential termed frequency-following response (FFR) to unravel the neural encoding maturation for two speech sound characteristics: voice pitch and temporal fine structure. 37 healthy-term neonates were tested at birth and retested at the ages of six and twelve months. Results revealed a reduction in neural phase-locking onset to the stimulus envelope from birth to six months, stabilizing by twelve months. While neural encoding of voice pitch remained consistent across ages, temporal fine structure encoding matured rapidly from birth to six months, without further improvement from six to twelve months. Results highlight the critical importance of the first six months of life in the maturation of neural encoding mechanisms that are crucial for phoneme discrimination during early language acquisition.