Mark V. Höfler , Jonas Lins , David Seelinger , Lukas Pachernegg , Timmy Schäfer , Stefan Spirk , Markus Biesalski , Torsten Gutmann
{"title":"DNP 增强固态 NMR - 解决纤维素/纸张衍生材料表面功能化问题的有力工具","authors":"Mark V. Höfler , Jonas Lins , David Seelinger , Lukas Pachernegg , Timmy Schäfer , Stefan Spirk , Markus Biesalski , Torsten Gutmann","doi":"10.1016/j.jmro.2024.100163","DOIUrl":null,"url":null,"abstract":"<div><div>This concept summarizes recent advances in development and application of DNP enhanced multinuclear solid-state NMR to study the molecular structure and surface functionalization of cellulose and paper-based materials. Moreover, a novel application is presented where DNP enhanced <sup>13</sup>C and <sup>15</sup>N solid-state NMR is used to identify structure moieties formed by cross-linking of hydroxypropyl cellulose. Given these two aspects of this concept-type of article, we thus combine both, a review on recent findings already published and unpublished recent data that complement the existing knowledge in the field of characterization of functional lignocellulosic materials by DNP enhanced solid-state NMR.</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"21 ","pages":"Article 100163"},"PeriodicalIF":2.6240,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNP enhanced solid-state NMR – A powerful tool to address the surface functionalization of cellulose/paper derived materials\",\"authors\":\"Mark V. Höfler , Jonas Lins , David Seelinger , Lukas Pachernegg , Timmy Schäfer , Stefan Spirk , Markus Biesalski , Torsten Gutmann\",\"doi\":\"10.1016/j.jmro.2024.100163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This concept summarizes recent advances in development and application of DNP enhanced multinuclear solid-state NMR to study the molecular structure and surface functionalization of cellulose and paper-based materials. Moreover, a novel application is presented where DNP enhanced <sup>13</sup>C and <sup>15</sup>N solid-state NMR is used to identify structure moieties formed by cross-linking of hydroxypropyl cellulose. Given these two aspects of this concept-type of article, we thus combine both, a review on recent findings already published and unpublished recent data that complement the existing knowledge in the field of characterization of functional lignocellulosic materials by DNP enhanced solid-state NMR.</div></div>\",\"PeriodicalId\":365,\"journal\":{\"name\":\"Journal of Magnetic Resonance Open\",\"volume\":\"21 \",\"pages\":\"Article 100163\"},\"PeriodicalIF\":2.6240,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance Open\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666441024000189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441024000189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DNP enhanced solid-state NMR – A powerful tool to address the surface functionalization of cellulose/paper derived materials
This concept summarizes recent advances in development and application of DNP enhanced multinuclear solid-state NMR to study the molecular structure and surface functionalization of cellulose and paper-based materials. Moreover, a novel application is presented where DNP enhanced 13C and 15N solid-state NMR is used to identify structure moieties formed by cross-linking of hydroxypropyl cellulose. Given these two aspects of this concept-type of article, we thus combine both, a review on recent findings already published and unpublished recent data that complement the existing knowledge in the field of characterization of functional lignocellulosic materials by DNP enhanced solid-state NMR.