Weizhen Wang , Chunfeng Ma , Xufeng Wang , Jiaojiao Feng , Leilei Dong , Jian Kang , Rui Jin , Xingze Li
{"title":"用于验证高分辨率卫星产品和监测农田灌溉的土壤水分实验","authors":"Weizhen Wang , Chunfeng Ma , Xufeng Wang , Jiaojiao Feng , Leilei Dong , Jian Kang , Rui Jin , Xingze Li","doi":"10.1016/j.agwat.2024.109071","DOIUrl":null,"url":null,"abstract":"<div><div>Validating the satellite soil moisture products is always an active research topic for the application of the products and improvement of the retrieval algorithms, attracting extensive attention. Nevertheless, seldom existing validation activities focus on the validation of high-resolution soil moisture products at the fine scale. To this end, an experiment was conducted in the middle stream of the Heihe River Basin in northwestern China in August to October of 2021, aiming to validate high-resolution satellite remote sensing products of soil moisture. The paper introduces the design, composite, and preliminary results of the experiment. A soil moisture observation network was established with two kinds of sensors (CS616 and Stevens Hydra Probe) validated against soil core measurements. Several synchronized campaigns were performed, and data were collected to validate the SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 and 1 km EASE-Grid Soil Moisture (SPL2SMAP_S) products. Besides, an optical trapezoid model (OPTRAM) and collected Sentinel-2 data were applied to estimate soil moisture and to map irrigated area. Preliminary analyses show that: 1) Steven probes perform best, with an RMSE = 0.040 m<sup>3</sup>m<sup>−3</sup> and ubRMSE<!--> <!-->=<!--> <!-->0.034 m<sup>3</sup>m<sup>−3</sup>; 2) Both the SPL2SMAP_S products at 3 km and 1 km show large RMSE (0.128 m<sup>3</sup>m<sup>−3</sup> for 3 km and 0.158 m<sup>3</sup>m<sup>−3</sup> for 1 km) and ubRMSE (0.115 m<sup>3</sup>m<sup>−3</sup> for 3 km and 0.158 m<sup>3</sup>m<sup>−3</sup> for 1 km); 3) The OPTRAM retrievals over bare surface present relatively smaller RMSE (0.06 m<sup>3</sup>m<sup>−3</sup>) and ubRMSE (0.057 m<sup>3</sup>m<sup>−3</sup>), while retrievals over vegetated croplands present a relatively large RMSE/ubRMSE (0.083/0.083 m<sup>3</sup>m<sup>−3</sup>), and the retrievals can identify the irrigated area at field scale. Overall, the experiment provides fruitful methodologies and datasets for the validation of high-resolution remote sensing products, benefiting the development and improvement of soil moisture retrieval algorithms and products to support irrigation scheduling and management at a precision agricultural scale in the future.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"304 ","pages":"Article 109071"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A soil moisture experiment for validating high-resolution satellite products and monitoring irrigation at agricultural field scale\",\"authors\":\"Weizhen Wang , Chunfeng Ma , Xufeng Wang , Jiaojiao Feng , Leilei Dong , Jian Kang , Rui Jin , Xingze Li\",\"doi\":\"10.1016/j.agwat.2024.109071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Validating the satellite soil moisture products is always an active research topic for the application of the products and improvement of the retrieval algorithms, attracting extensive attention. Nevertheless, seldom existing validation activities focus on the validation of high-resolution soil moisture products at the fine scale. To this end, an experiment was conducted in the middle stream of the Heihe River Basin in northwestern China in August to October of 2021, aiming to validate high-resolution satellite remote sensing products of soil moisture. The paper introduces the design, composite, and preliminary results of the experiment. A soil moisture observation network was established with two kinds of sensors (CS616 and Stevens Hydra Probe) validated against soil core measurements. Several synchronized campaigns were performed, and data were collected to validate the SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 and 1 km EASE-Grid Soil Moisture (SPL2SMAP_S) products. Besides, an optical trapezoid model (OPTRAM) and collected Sentinel-2 data were applied to estimate soil moisture and to map irrigated area. Preliminary analyses show that: 1) Steven probes perform best, with an RMSE = 0.040 m<sup>3</sup>m<sup>−3</sup> and ubRMSE<!--> <!-->=<!--> <!-->0.034 m<sup>3</sup>m<sup>−3</sup>; 2) Both the SPL2SMAP_S products at 3 km and 1 km show large RMSE (0.128 m<sup>3</sup>m<sup>−3</sup> for 3 km and 0.158 m<sup>3</sup>m<sup>−3</sup> for 1 km) and ubRMSE (0.115 m<sup>3</sup>m<sup>−3</sup> for 3 km and 0.158 m<sup>3</sup>m<sup>−3</sup> for 1 km); 3) The OPTRAM retrievals over bare surface present relatively smaller RMSE (0.06 m<sup>3</sup>m<sup>−3</sup>) and ubRMSE (0.057 m<sup>3</sup>m<sup>−3</sup>), while retrievals over vegetated croplands present a relatively large RMSE/ubRMSE (0.083/0.083 m<sup>3</sup>m<sup>−3</sup>), and the retrievals can identify the irrigated area at field scale. Overall, the experiment provides fruitful methodologies and datasets for the validation of high-resolution remote sensing products, benefiting the development and improvement of soil moisture retrieval algorithms and products to support irrigation scheduling and management at a precision agricultural scale in the future.</div></div>\",\"PeriodicalId\":7634,\"journal\":{\"name\":\"Agricultural Water Management\",\"volume\":\"304 \",\"pages\":\"Article 109071\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Water Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378377424004074\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377424004074","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
A soil moisture experiment for validating high-resolution satellite products and monitoring irrigation at agricultural field scale
Validating the satellite soil moisture products is always an active research topic for the application of the products and improvement of the retrieval algorithms, attracting extensive attention. Nevertheless, seldom existing validation activities focus on the validation of high-resolution soil moisture products at the fine scale. To this end, an experiment was conducted in the middle stream of the Heihe River Basin in northwestern China in August to October of 2021, aiming to validate high-resolution satellite remote sensing products of soil moisture. The paper introduces the design, composite, and preliminary results of the experiment. A soil moisture observation network was established with two kinds of sensors (CS616 and Stevens Hydra Probe) validated against soil core measurements. Several synchronized campaigns were performed, and data were collected to validate the SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 and 1 km EASE-Grid Soil Moisture (SPL2SMAP_S) products. Besides, an optical trapezoid model (OPTRAM) and collected Sentinel-2 data were applied to estimate soil moisture and to map irrigated area. Preliminary analyses show that: 1) Steven probes perform best, with an RMSE = 0.040 m3m−3 and ubRMSE = 0.034 m3m−3; 2) Both the SPL2SMAP_S products at 3 km and 1 km show large RMSE (0.128 m3m−3 for 3 km and 0.158 m3m−3 for 1 km) and ubRMSE (0.115 m3m−3 for 3 km and 0.158 m3m−3 for 1 km); 3) The OPTRAM retrievals over bare surface present relatively smaller RMSE (0.06 m3m−3) and ubRMSE (0.057 m3m−3), while retrievals over vegetated croplands present a relatively large RMSE/ubRMSE (0.083/0.083 m3m−3), and the retrievals can identify the irrigated area at field scale. Overall, the experiment provides fruitful methodologies and datasets for the validation of high-resolution remote sensing products, benefiting the development and improvement of soil moisture retrieval algorithms and products to support irrigation scheduling and management at a precision agricultural scale in the future.
期刊介绍:
Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.