{"title":"利用神经网络和叠加采样统一设计的机器学习优化苯乳酸的生物合成和分离","authors":"Jiawei Wu, Zhihong Chen, Lulu Liu, Yao Qu, Linian Cai, Xiaoling Lou, Junxian Yun","doi":"10.1016/j.bej.2024.109506","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning methodology with neural network models was developed using the datasets based on the overlay sampling uniform design (OSUD) for optimization of phenyllactic acid biosynthesis and separation processes by cryogels. Compared with the multiple regression, the machine learning models exhibited a significant improvement of predictive accuracy of phenyllactic acid biosynthesis, in which the radial basis function neural network (RBFNN) model had the best predictive performance with the accuracy increased by 65.2 %. The combination of RBFNN and OSUD was further employed to optimize the chromatographic separation of phenyllactic acid from crude fermentation broth using two poly(hydroxyethyl methacrylate) based anion-exchange cryogel packed-beds (grafted with (vinylbenzyl)trimethylammonium chloride and <em>N,N</em>-dimethylaminoethyl methacrylate). After optimizing the three critical separation parameters: sample volume (5.3–31.8 mL), flow velocity (1.0–6.0 cm/min), and elution salt concentration (0.05–0.3 mol/L), it was found that the models provided excellent predictions. The optimized recovery rates for the two packed-beds were determined to be 76.5 % and 83.0 %, and the optimal adsorption capacities were 0.26 mg/mL and 0.39 mg/mL from the fermentation broth, respectively. This study provides a reliable integrated approach for optimizing the synthesis and separation processes of high-value bioproducts like phenyllactic acid from crude feedstocks.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"212 ","pages":"Article 109506"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of phenyllactic acid biosynthesis and separation by machine learning with neural network and overlay sampling uniform design\",\"authors\":\"Jiawei Wu, Zhihong Chen, Lulu Liu, Yao Qu, Linian Cai, Xiaoling Lou, Junxian Yun\",\"doi\":\"10.1016/j.bej.2024.109506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine learning methodology with neural network models was developed using the datasets based on the overlay sampling uniform design (OSUD) for optimization of phenyllactic acid biosynthesis and separation processes by cryogels. Compared with the multiple regression, the machine learning models exhibited a significant improvement of predictive accuracy of phenyllactic acid biosynthesis, in which the radial basis function neural network (RBFNN) model had the best predictive performance with the accuracy increased by 65.2 %. The combination of RBFNN and OSUD was further employed to optimize the chromatographic separation of phenyllactic acid from crude fermentation broth using two poly(hydroxyethyl methacrylate) based anion-exchange cryogel packed-beds (grafted with (vinylbenzyl)trimethylammonium chloride and <em>N,N</em>-dimethylaminoethyl methacrylate). After optimizing the three critical separation parameters: sample volume (5.3–31.8 mL), flow velocity (1.0–6.0 cm/min), and elution salt concentration (0.05–0.3 mol/L), it was found that the models provided excellent predictions. The optimized recovery rates for the two packed-beds were determined to be 76.5 % and 83.0 %, and the optimal adsorption capacities were 0.26 mg/mL and 0.39 mg/mL from the fermentation broth, respectively. This study provides a reliable integrated approach for optimizing the synthesis and separation processes of high-value bioproducts like phenyllactic acid from crude feedstocks.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"212 \",\"pages\":\"Article 109506\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24002936\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002936","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Optimization of phenyllactic acid biosynthesis and separation by machine learning with neural network and overlay sampling uniform design
Machine learning methodology with neural network models was developed using the datasets based on the overlay sampling uniform design (OSUD) for optimization of phenyllactic acid biosynthesis and separation processes by cryogels. Compared with the multiple regression, the machine learning models exhibited a significant improvement of predictive accuracy of phenyllactic acid biosynthesis, in which the radial basis function neural network (RBFNN) model had the best predictive performance with the accuracy increased by 65.2 %. The combination of RBFNN and OSUD was further employed to optimize the chromatographic separation of phenyllactic acid from crude fermentation broth using two poly(hydroxyethyl methacrylate) based anion-exchange cryogel packed-beds (grafted with (vinylbenzyl)trimethylammonium chloride and N,N-dimethylaminoethyl methacrylate). After optimizing the three critical separation parameters: sample volume (5.3–31.8 mL), flow velocity (1.0–6.0 cm/min), and elution salt concentration (0.05–0.3 mol/L), it was found that the models provided excellent predictions. The optimized recovery rates for the two packed-beds were determined to be 76.5 % and 83.0 %, and the optimal adsorption capacities were 0.26 mg/mL and 0.39 mg/mL from the fermentation broth, respectively. This study provides a reliable integrated approach for optimizing the synthesis and separation processes of high-value bioproducts like phenyllactic acid from crude feedstocks.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.