{"title":"基于代理基础模型的智能交通:实现交互式协作智能汽车","authors":"Bingyi Xia;Peijia Xie;Jiankun Wang","doi":"10.1109/TIV.2024.3457759","DOIUrl":null,"url":null,"abstract":"This letter reports the insights gained during a Distributed/Decentralized Hybrid Workshop on Foundation/Infrastructure Intelligence (FII), where we discussed the evolving role of Foundation Models in the field of intelligent vehicles. These models, pre-trained on multimodal data, have emerged as pivotal in the landscape of intelligent vehicles by leveraging their capabilities for high-level reasoning. Ongoing research focuses on these models to further improve scene perception and decision-making, aiming to develop adaptive systems for robot navigation and autonomous driving. However, for smart mobility across the Cyber-Physical-Social space, foundation intelligence should learn human-level knowledge to perform sophisticated interactions and collaborations based on human feedback. Agent-based Foundation Models, as the new training paradigm, can generate cross-domain actions consistent with perception information, paving the way to realize interactive and collaborative agents. This letter discusses the challenges of enhancing and leveraging the scene understanding and spatial reasoning capabilities of the pre-trained foundation model for smart mobility. It also offers insights into the embodied employment of foundation and infrastructure intelligence in enhancing multimodal interactions between robots, environments, and humans.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 7","pages":"5130-5133"},"PeriodicalIF":14.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Mobility With Agent-Based Foundation Models: Towards Interactive and Collaborative Intelligent Vehicles\",\"authors\":\"Bingyi Xia;Peijia Xie;Jiankun Wang\",\"doi\":\"10.1109/TIV.2024.3457759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter reports the insights gained during a Distributed/Decentralized Hybrid Workshop on Foundation/Infrastructure Intelligence (FII), where we discussed the evolving role of Foundation Models in the field of intelligent vehicles. These models, pre-trained on multimodal data, have emerged as pivotal in the landscape of intelligent vehicles by leveraging their capabilities for high-level reasoning. Ongoing research focuses on these models to further improve scene perception and decision-making, aiming to develop adaptive systems for robot navigation and autonomous driving. However, for smart mobility across the Cyber-Physical-Social space, foundation intelligence should learn human-level knowledge to perform sophisticated interactions and collaborations based on human feedback. Agent-based Foundation Models, as the new training paradigm, can generate cross-domain actions consistent with perception information, paving the way to realize interactive and collaborative agents. This letter discusses the challenges of enhancing and leveraging the scene understanding and spatial reasoning capabilities of the pre-trained foundation model for smart mobility. It also offers insights into the embodied employment of foundation and infrastructure intelligence in enhancing multimodal interactions between robots, environments, and humans.\",\"PeriodicalId\":36532,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Vehicles\",\"volume\":\"9 7\",\"pages\":\"5130-5133\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10675321/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10675321/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Smart Mobility With Agent-Based Foundation Models: Towards Interactive and Collaborative Intelligent Vehicles
This letter reports the insights gained during a Distributed/Decentralized Hybrid Workshop on Foundation/Infrastructure Intelligence (FII), where we discussed the evolving role of Foundation Models in the field of intelligent vehicles. These models, pre-trained on multimodal data, have emerged as pivotal in the landscape of intelligent vehicles by leveraging their capabilities for high-level reasoning. Ongoing research focuses on these models to further improve scene perception and decision-making, aiming to develop adaptive systems for robot navigation and autonomous driving. However, for smart mobility across the Cyber-Physical-Social space, foundation intelligence should learn human-level knowledge to perform sophisticated interactions and collaborations based on human feedback. Agent-based Foundation Models, as the new training paradigm, can generate cross-domain actions consistent with perception information, paving the way to realize interactive and collaborative agents. This letter discusses the challenges of enhancing and leveraging the scene understanding and spatial reasoning capabilities of the pre-trained foundation model for smart mobility. It also offers insights into the embodied employment of foundation and infrastructure intelligence in enhancing multimodal interactions between robots, environments, and humans.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.