Hyunseung Kang, Zijian Guo, Zhonghua Liu, Dylan Small
{"title":"无效工具的识别和推断","authors":"Hyunseung Kang, Zijian Guo, Zhonghua Liu, Dylan Small","doi":"10.1146/annurev-statistics-112723-034721","DOIUrl":null,"url":null,"abstract":"Instrumental variables (IVs) are widely used to study the causal effect of an exposure on an outcome in the presence of unmeasured confounding. IVs require an instrument, a variable that (a) is associated with the exposure, (b) has no direct effect on the outcome except through the exposure, and (c) is not related to unmeasured confounders. Unfortunately, finding variables that satisfy conditions b or c can be challenging in practice. This article reviews works where instruments may not satisfy conditions b or c, which we refer to as invalid instruments. We review identification and inference under different violations of b or c, specifically under linear models, nonlinear models, and heteroskedastic models. We conclude with an empirical comparison of various methods by reanalyzing the effect of body mass index on systolic blood pressure from the UK Biobank.","PeriodicalId":48855,"journal":{"name":"Annual Review of Statistics and Its Application","volume":"735 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and Inference with Invalid Instruments\",\"authors\":\"Hyunseung Kang, Zijian Guo, Zhonghua Liu, Dylan Small\",\"doi\":\"10.1146/annurev-statistics-112723-034721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instrumental variables (IVs) are widely used to study the causal effect of an exposure on an outcome in the presence of unmeasured confounding. IVs require an instrument, a variable that (a) is associated with the exposure, (b) has no direct effect on the outcome except through the exposure, and (c) is not related to unmeasured confounders. Unfortunately, finding variables that satisfy conditions b or c can be challenging in practice. This article reviews works where instruments may not satisfy conditions b or c, which we refer to as invalid instruments. We review identification and inference under different violations of b or c, specifically under linear models, nonlinear models, and heteroskedastic models. We conclude with an empirical comparison of various methods by reanalyzing the effect of body mass index on systolic blood pressure from the UK Biobank.\",\"PeriodicalId\":48855,\"journal\":{\"name\":\"Annual Review of Statistics and Its Application\",\"volume\":\"735 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Statistics and Its Application\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-statistics-112723-034721\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Statistics and Its Application","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-112723-034721","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
工具变量(IVs)被广泛用于研究在存在未测量混杂因素的情况下暴露对结果的因果效应。工具变量需要一个工具,一个(a)与暴露相关的变量,(b)除了通过暴露对结果没有直接影响的变量,以及(c)与未测量混杂因素无关的变量。遗憾的是,要找到满足条件 b 或 c 的变量在实践中可能很困难。本文回顾了工具可能不满足条件 b 或 c 的研究,我们称之为无效工具。我们回顾了不同的 b 或 c 条件下的识别和推断,特别是线性模型、非线性模型和异方差模型。最后,我们通过重新分析英国生物库中体重指数对收缩压的影响,对各种方法进行了实证比较。
Identification and Inference with Invalid Instruments
Instrumental variables (IVs) are widely used to study the causal effect of an exposure on an outcome in the presence of unmeasured confounding. IVs require an instrument, a variable that (a) is associated with the exposure, (b) has no direct effect on the outcome except through the exposure, and (c) is not related to unmeasured confounders. Unfortunately, finding variables that satisfy conditions b or c can be challenging in practice. This article reviews works where instruments may not satisfy conditions b or c, which we refer to as invalid instruments. We review identification and inference under different violations of b or c, specifically under linear models, nonlinear models, and heteroskedastic models. We conclude with an empirical comparison of various methods by reanalyzing the effect of body mass index on systolic blood pressure from the UK Biobank.
期刊介绍:
The Annual Review of Statistics and Its Application publishes comprehensive review articles focusing on methodological advancements in statistics and the utilization of computational tools facilitating these advancements. It is abstracted and indexed in Scopus, Science Citation Index Expanded, and Inspec.