通过 d 轨道杂化提高镍铁合金催化剂的氧气进化反应性能

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2024-09-26 DOI:10.1007/s40820-024-01528-9
Xing Wang, Wei Pi, Sheng Hu, Haifeng Bao, Na Yao, Wei Luo
{"title":"通过 d 轨道杂化提高镍铁合金催化剂的氧气进化反应性能","authors":"Xing Wang, Wei Pi, Sheng Hu, Haifeng Bao, Na Yao, Wei Luo","doi":"10.1007/s40820-024-01528-9","DOIUrl":null,"url":null,"abstract":"<p>Anion-exchange membrane water electrolyzers (AEMWEs) for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts. By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units, the <i>d</i>-orbital and electronic structures can be adjusted, which is an important strategy to achieve sufficient oxygen evolution reaction (OER) performance in AEMWEs. Herein, the ternary NiFeM (M: La, Mo) catalysts featured with distinct M-NiFe units and varying <i>d</i>-orbitals are reported in this work. Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between <i>d</i> orbital in NiFeM and 2<i>p</i> in oxygen, resulting in enhanced adsorption strength of oxygen intermediates, and reduced rate-determining step energy barrier, which is responsible for the enhanced OER performance. More critically, the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm<sup>−2</sup> in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting Oxygen Evolution Reaction Performance on NiFe-Based Catalysts Through d-Orbital Hybridization\",\"authors\":\"Xing Wang, Wei Pi, Sheng Hu, Haifeng Bao, Na Yao, Wei Luo\",\"doi\":\"10.1007/s40820-024-01528-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Anion-exchange membrane water electrolyzers (AEMWEs) for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts. By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units, the <i>d</i>-orbital and electronic structures can be adjusted, which is an important strategy to achieve sufficient oxygen evolution reaction (OER) performance in AEMWEs. Herein, the ternary NiFeM (M: La, Mo) catalysts featured with distinct M-NiFe units and varying <i>d</i>-orbitals are reported in this work. Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between <i>d</i> orbital in NiFeM and 2<i>p</i> in oxygen, resulting in enhanced adsorption strength of oxygen intermediates, and reduced rate-determining step energy barrier, which is responsible for the enhanced OER performance. More critically, the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm<sup>−2</sup> in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.</p>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40820-024-01528-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-024-01528-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

用于绿色制氢的阴离子交换膜水电解槽(AEMWEs)因其使用地球富集的镍铁合金催化剂的可行性而受到广泛关注。通过在镍铁基催化剂中引入第三种金属来构建非对称的 M-NiFe 单元,可以调整 d-轨道和电子结构,这是在 AEMWEs 中实现充分的氧进化反应(OER)性能的重要策略。本文报告了具有不同 M-NiFe 单元和不同 d 轨道的三元 NiFeM(M:La、Mo)催化剂。实验和理论计算结果表明,La 的掺杂导致 NiFeM 的 d 轨道与氧的 2p 轨道之间的杂化得到优化,从而增强了氧中间体的吸附强度,降低了决定速率的阶跃能垒,这也是增强 OER 性能的原因。更重要的是,所获得的 NiFeLa 催化剂在阴离子交换膜电解槽中只需要 1.58 V 的电压就能达到 1 A cm-2,并且具有长达 600 小时的出色长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boosting Oxygen Evolution Reaction Performance on NiFe-Based Catalysts Through d-Orbital Hybridization

Anion-exchange membrane water electrolyzers (AEMWEs) for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts. By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units, the d-orbital and electronic structures can be adjusted, which is an important strategy to achieve sufficient oxygen evolution reaction (OER) performance in AEMWEs. Herein, the ternary NiFeM (M: La, Mo) catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work. Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen, resulting in enhanced adsorption strength of oxygen intermediates, and reduced rate-determining step energy barrier, which is responsible for the enhanced OER performance. More critically, the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm−2 in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
Optimization Strategies of Na3V2(PO4)3 Cathode Materials for Sodium-Ion Batteries High Fe-Loading Single-Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy Aligned Ion Conduction Pathway of Polyrotaxane-Based Electrolyte with Dispersed Hydrophobic Chains for Solid-State Lithium–Oxygen Batteries Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1