铜掺杂的 Bi2MoO6(同时存在氧空位)可增强二氧化碳光还原作用

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-09-26 DOI:10.1039/D4QI02005G
Jiawei Liu, Xin Liu, Chunhui Dai, Chao Zeng, Sajjad Ali, Mohamed Bououdina and Yushuai Jia
{"title":"铜掺杂的 Bi2MoO6(同时存在氧空位)可增强二氧化碳光还原作用","authors":"Jiawei Liu, Xin Liu, Chunhui Dai, Chao Zeng, Sajjad Ali, Mohamed Bououdina and Yushuai Jia","doi":"10.1039/D4QI02005G","DOIUrl":null,"url":null,"abstract":"<p >Photocatalytic CO<small><sub>2</sub></small> reduction into highly valued chemical fuels holds great promise for resolving the issues related to energy shortage and mitigating greenhouse gas problems. However, the CO<small><sub>2</sub></small> conversion efficiency of current photocatalysts is hampered by their undesirable charge transfer and deficient reactive sites. Herein, we synthesized Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small> doped with monovalent Cu with accompanying O vacancies (Ov) to accelerate bulk and surface charge separation and transfer. Moreover, the Cu dopants serving as reactive sites could improve the adsorption and activation of CO<small><sub>2</sub></small> molecules on the catalyst's surface. As a result, the Cu-doped Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small> catalysts exhibit remarkedly boosted CO<small><sub>2</sub></small> reduction activity to the pristine Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small>, and the peak activity reaches at Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small>–10% Cu with a CO evolution rate of 11.40 μmol g<small><sup>−1 </sup></small>h<small><sup>−1</sup></small> under 300 W Xenon lamp irradiation, without any cocatalyst or sacrificial agent. This photoactivity surpasses that of most previously reported catalysts, and it is about 6-fold higher than that of Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small> (1.94 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>). Moreover, even under natural sunlight illumination, Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small>–10% Cu exhibited considerable activity for CO<small><sub>2</sub></small> photocatalytic conversion into CO. This study may inspire an efficient strategy for designing and developing high performance photocatalysts toward CO<small><sub>2</sub></small> conversion.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper-doped Bi2MoO6 with concurrent oxygen vacancies for enhanced CO2 photoreduction†\",\"authors\":\"Jiawei Liu, Xin Liu, Chunhui Dai, Chao Zeng, Sajjad Ali, Mohamed Bououdina and Yushuai Jia\",\"doi\":\"10.1039/D4QI02005G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photocatalytic CO<small><sub>2</sub></small> reduction into highly valued chemical fuels holds great promise for resolving the issues related to energy shortage and mitigating greenhouse gas problems. However, the CO<small><sub>2</sub></small> conversion efficiency of current photocatalysts is hampered by their undesirable charge transfer and deficient reactive sites. Herein, we synthesized Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small> doped with monovalent Cu with accompanying O vacancies (Ov) to accelerate bulk and surface charge separation and transfer. Moreover, the Cu dopants serving as reactive sites could improve the adsorption and activation of CO<small><sub>2</sub></small> molecules on the catalyst's surface. As a result, the Cu-doped Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small> catalysts exhibit remarkedly boosted CO<small><sub>2</sub></small> reduction activity to the pristine Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small>, and the peak activity reaches at Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small>–10% Cu with a CO evolution rate of 11.40 μmol g<small><sup>−1 </sup></small>h<small><sup>−1</sup></small> under 300 W Xenon lamp irradiation, without any cocatalyst or sacrificial agent. This photoactivity surpasses that of most previously reported catalysts, and it is about 6-fold higher than that of Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small> (1.94 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>). Moreover, even under natural sunlight illumination, Bi<small><sub>2</sub></small>MoO<small><sub>6</sub></small>–10% Cu exhibited considerable activity for CO<small><sub>2</sub></small> photocatalytic conversion into CO. This study may inspire an efficient strategy for designing and developing high performance photocatalysts toward CO<small><sub>2</sub></small> conversion.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02005g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02005g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光催化将二氧化碳还原成高价值的化学燃料,为解决能源短缺和减少温室气体带来了巨大希望。但目前的二氧化碳转化效率受到光催化剂不良电荷转移和反应位点不足的影响。在此,我们合成了掺杂了单价Cu和伴生O空位(Ov)的Bi2MoO6,以加速块体和表面电荷的分离和转移。此外,作为反应位点的掺杂铜还能改善催化剂表面对二氧化碳分子的吸附和活化。因此,与原始 Bi2MoO6 相比,掺杂铜的 Bi2MoO6 催化剂的二氧化碳还原活性显著提高,在 300 W 氙灯辐照下,达到峰值活性的 Bi2MoO6-10% Cu 催化剂的二氧化碳进化速率为 11.40 μmol g-1 h-1,而无需任何助催化剂或牺牲剂。这一光活性超过了之前报道的大多数催化剂,是 Bi2MoO6(1.94 μmol g-1 h-1)的 6 倍。此外,即使在自然日光照射下,Bi2MoO6-10% Cu 在 CO2 光催化转化为 CO 方面也表现出相当高的活性。这项研究为设计和开发高性能光催化剂提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Copper-doped Bi2MoO6 with concurrent oxygen vacancies for enhanced CO2 photoreduction†

Photocatalytic CO2 reduction into highly valued chemical fuels holds great promise for resolving the issues related to energy shortage and mitigating greenhouse gas problems. However, the CO2 conversion efficiency of current photocatalysts is hampered by their undesirable charge transfer and deficient reactive sites. Herein, we synthesized Bi2MoO6 doped with monovalent Cu with accompanying O vacancies (Ov) to accelerate bulk and surface charge separation and transfer. Moreover, the Cu dopants serving as reactive sites could improve the adsorption and activation of CO2 molecules on the catalyst's surface. As a result, the Cu-doped Bi2MoO6 catalysts exhibit remarkedly boosted CO2 reduction activity to the pristine Bi2MoO6, and the peak activity reaches at Bi2MoO6–10% Cu with a CO evolution rate of 11.40 μmol g−1 h−1 under 300 W Xenon lamp irradiation, without any cocatalyst or sacrificial agent. This photoactivity surpasses that of most previously reported catalysts, and it is about 6-fold higher than that of Bi2MoO6 (1.94 μmol g−1 h−1). Moreover, even under natural sunlight illumination, Bi2MoO6–10% Cu exhibited considerable activity for CO2 photocatalytic conversion into CO. This study may inspire an efficient strategy for designing and developing high performance photocatalysts toward CO2 conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1