Wei Hu, Fang Li, Huanling Li, Lei Zhang, Rupeng Cai, Qiying Lin, Yao Li, Xiaoyun Qin, Jiabao Wang
{"title":"利用高密度 SNP 遗传图谱绘制荔枝枝叶相关性状的 QTL 图谱","authors":"Wei Hu, Fang Li, Huanling Li, Lei Zhang, Rupeng Cai, Qiying Lin, Yao Li, Xiaoyun Qin, Jiabao Wang","doi":"10.1016/j.hpj.2024.04.005","DOIUrl":null,"url":null,"abstract":"Litchi (<ce:italic>Litchi chinensis</ce:italic> Sonn.), an important fruit tree in tropical and subtropical regions, possesses substantial economic value. The branch- and leaf-related traits of litchi have a significant impact on litchi yield and quality. However, due to limitations such as the density of the genetic linkage map, there have been few studies on mapping QTLs of branch- and leaf-related traits. In this study, a high-density genetic map was constructed by next-generation sequencing (NGS) using an F<ce:inf loc=\"post\">1</ce:inf> population of 264 progenies, derived from the cross between the cultivars ‘Sanyuehong’ and ‘Ziniangxi’. A total of 2574 high-quality BINs (binomial intervals) were obtained, and a genetic linkage map was constructed with a total length of 1753.3 cM and an average marker distance of 0.68 cM. With the genetic map and the phenotyping of single leaf length (SLL), single leaf width (SLW), leaf shape index (LSI), weight of specific leaf (WSL), petiole length (PL) and compound leaf length (CLL) measured in three seasons, 11, 9, 9, 10, 9 and 12 QTLs were detected for SLL, SLW, WSL, LSI, PL and CLL traits, respectively. Among these QTLs, five QTLs were consistently detected in two seasons and 12 pleiotropic QTLs were identified for at least two traits. These findings will provide new insights for the gene cloning for branch- and leaf-related traits as well as marker-assisted selection (MAS).","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QTL mapping for branch- and leaf-related traits with a high-density SNP genetic map in litchi (Litchi chinensis Sonn.)\",\"authors\":\"Wei Hu, Fang Li, Huanling Li, Lei Zhang, Rupeng Cai, Qiying Lin, Yao Li, Xiaoyun Qin, Jiabao Wang\",\"doi\":\"10.1016/j.hpj.2024.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Litchi (<ce:italic>Litchi chinensis</ce:italic> Sonn.), an important fruit tree in tropical and subtropical regions, possesses substantial economic value. The branch- and leaf-related traits of litchi have a significant impact on litchi yield and quality. However, due to limitations such as the density of the genetic linkage map, there have been few studies on mapping QTLs of branch- and leaf-related traits. In this study, a high-density genetic map was constructed by next-generation sequencing (NGS) using an F<ce:inf loc=\\\"post\\\">1</ce:inf> population of 264 progenies, derived from the cross between the cultivars ‘Sanyuehong’ and ‘Ziniangxi’. A total of 2574 high-quality BINs (binomial intervals) were obtained, and a genetic linkage map was constructed with a total length of 1753.3 cM and an average marker distance of 0.68 cM. With the genetic map and the phenotyping of single leaf length (SLL), single leaf width (SLW), leaf shape index (LSI), weight of specific leaf (WSL), petiole length (PL) and compound leaf length (CLL) measured in three seasons, 11, 9, 9, 10, 9 and 12 QTLs were detected for SLL, SLW, WSL, LSI, PL and CLL traits, respectively. Among these QTLs, five QTLs were consistently detected in two seasons and 12 pleiotropic QTLs were identified for at least two traits. These findings will provide new insights for the gene cloning for branch- and leaf-related traits as well as marker-assisted selection (MAS).\",\"PeriodicalId\":13178,\"journal\":{\"name\":\"Horticultural Plant Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticultural Plant Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.hpj.2024.04.005\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.hpj.2024.04.005","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
QTL mapping for branch- and leaf-related traits with a high-density SNP genetic map in litchi (Litchi chinensis Sonn.)
Litchi (Litchi chinensis Sonn.), an important fruit tree in tropical and subtropical regions, possesses substantial economic value. The branch- and leaf-related traits of litchi have a significant impact on litchi yield and quality. However, due to limitations such as the density of the genetic linkage map, there have been few studies on mapping QTLs of branch- and leaf-related traits. In this study, a high-density genetic map was constructed by next-generation sequencing (NGS) using an F1 population of 264 progenies, derived from the cross between the cultivars ‘Sanyuehong’ and ‘Ziniangxi’. A total of 2574 high-quality BINs (binomial intervals) were obtained, and a genetic linkage map was constructed with a total length of 1753.3 cM and an average marker distance of 0.68 cM. With the genetic map and the phenotyping of single leaf length (SLL), single leaf width (SLW), leaf shape index (LSI), weight of specific leaf (WSL), petiole length (PL) and compound leaf length (CLL) measured in three seasons, 11, 9, 9, 10, 9 and 12 QTLs were detected for SLL, SLW, WSL, LSI, PL and CLL traits, respectively. Among these QTLs, five QTLs were consistently detected in two seasons and 12 pleiotropic QTLs were identified for at least two traits. These findings will provide new insights for the gene cloning for branch- and leaf-related traits as well as marker-assisted selection (MAS).
期刊介绍:
Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.