Paulo Silva Filho , Claudio Persello , Raian V. Maretto , Renato Machado
{"title":"绘制巴西热带草原自然植被图:合成孔径雷达-光学不确定性感知深度学习方法","authors":"Paulo Silva Filho , Claudio Persello , Raian V. Maretto , Renato Machado","doi":"10.1016/j.isprsjprs.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>The Brazilian savanna (Cerrado) is considered a hotspot for conservation. Despite its environmental and social importance, the biome has suffered a rapid transformation process due to human activities. Mapping and monitoring the remaining vegetation is essential to guide public policies for biodiversity conservation. However, accurately mapping the Cerrado’s vegetation is still an open challenge. Its diverse but spectrally similar physiognomies are a source of confusion for state-of-the-art (SOTA) methods. This study proposes a deep learning model to map the natural vegetation of the Cerrado at the regional to biome level, fusing Synthetic Aperture Radar (SAR) and optical data. The proposed model is designed to deal with uncertainties caused by the different resolutions of the input Sentinel-1/2 images (10 m) and the reference data, derived from Landsat images (30 m). We designed a multi-resolution label-propagation (MRLP) module that infers maps at both resolutions and uses the class scores from the 30 m output as features for the 10 m classification layer. We train the model with the proposed calibrated dual focal loss function in a 2-stage hierarchical manner. Our results reached an overall accuracy of 70.37%, representing an increase of 15.64% compared to a SOTA random forest (RF) model. Moreover, we propose an uncertainty quantification method, which has shown to be useful not only in validating the model, but also in highlighting areas of label noise in the reference. The developed codes and dataset are available on <span><span>Github</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 405-421"},"PeriodicalIF":10.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping the Brazilian savanna’s natural vegetation: A SAR-optical uncertainty-aware deep learning approach\",\"authors\":\"Paulo Silva Filho , Claudio Persello , Raian V. Maretto , Renato Machado\",\"doi\":\"10.1016/j.isprsjprs.2024.09.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Brazilian savanna (Cerrado) is considered a hotspot for conservation. Despite its environmental and social importance, the biome has suffered a rapid transformation process due to human activities. Mapping and monitoring the remaining vegetation is essential to guide public policies for biodiversity conservation. However, accurately mapping the Cerrado’s vegetation is still an open challenge. Its diverse but spectrally similar physiognomies are a source of confusion for state-of-the-art (SOTA) methods. This study proposes a deep learning model to map the natural vegetation of the Cerrado at the regional to biome level, fusing Synthetic Aperture Radar (SAR) and optical data. The proposed model is designed to deal with uncertainties caused by the different resolutions of the input Sentinel-1/2 images (10 m) and the reference data, derived from Landsat images (30 m). We designed a multi-resolution label-propagation (MRLP) module that infers maps at both resolutions and uses the class scores from the 30 m output as features for the 10 m classification layer. We train the model with the proposed calibrated dual focal loss function in a 2-stage hierarchical manner. Our results reached an overall accuracy of 70.37%, representing an increase of 15.64% compared to a SOTA random forest (RF) model. Moreover, we propose an uncertainty quantification method, which has shown to be useful not only in validating the model, but also in highlighting areas of label noise in the reference. The developed codes and dataset are available on <span><span>Github</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 405-421\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003575\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003575","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Mapping the Brazilian savanna’s natural vegetation: A SAR-optical uncertainty-aware deep learning approach
The Brazilian savanna (Cerrado) is considered a hotspot for conservation. Despite its environmental and social importance, the biome has suffered a rapid transformation process due to human activities. Mapping and monitoring the remaining vegetation is essential to guide public policies for biodiversity conservation. However, accurately mapping the Cerrado’s vegetation is still an open challenge. Its diverse but spectrally similar physiognomies are a source of confusion for state-of-the-art (SOTA) methods. This study proposes a deep learning model to map the natural vegetation of the Cerrado at the regional to biome level, fusing Synthetic Aperture Radar (SAR) and optical data. The proposed model is designed to deal with uncertainties caused by the different resolutions of the input Sentinel-1/2 images (10 m) and the reference data, derived from Landsat images (30 m). We designed a multi-resolution label-propagation (MRLP) module that infers maps at both resolutions and uses the class scores from the 30 m output as features for the 10 m classification layer. We train the model with the proposed calibrated dual focal loss function in a 2-stage hierarchical manner. Our results reached an overall accuracy of 70.37%, representing an increase of 15.64% compared to a SOTA random forest (RF) model. Moreover, we propose an uncertainty quantification method, which has shown to be useful not only in validating the model, but also in highlighting areas of label noise in the reference. The developed codes and dataset are available on Github.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.