Yifeng Wang , Hua Shao , Kristopher L. Kuhlman , Carlos F. Jove-Colon , Olaf Kolditz
{"title":"可变形低渗透性岩盐中剪切诱导的流体定位、偶发性流体释放和孔隙度波","authors":"Yifeng Wang , Hua Shao , Kristopher L. Kuhlman , Carlos F. Jove-Colon , Olaf Kolditz","doi":"10.1016/j.gete.2024.100600","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding fluid distribution and migration in deformable low-permeability rock salt is critical for geologic disposal of nuclear waste. Field observations indicate that fluids in a salt formation are likely compartmentalized into relatively isolated patches and fluid release from such a formation is generally episodic. The underlying mechanism for these phenomena remains poorly understood. In this paper, a hydrological-mechanical model is formulated for fluid percolation in a rock salt formation under a deviatoric stress. Using a linear stability analysis, we show that a porosity wave (a train of alternating high and low porosity pockets) can emerge from positive feedbacks among intergranular wetting, grain boundary weakening and shear-induced material dilatancy. Fluid localization or episodic release can be viewed as a stationary or propagating porosity wave respectively. Fluid pockets transported via a porosity wave remain relatively isolated with minimal mixing between neighboring pockets. We further show that the velocity of fluid flow can be significantly enhanced by the emergence of a porosity wave. The concept and the related model presented in this paper provide a unified consistent explanation for the key features observed in fluid flow in rock salt. The similar process is expected to occur in other deformable low-permeability media such as shale and partially molten rocks under a deviatoric stress. Thus, the result presented here has an important implication to hydrocarbon expulsion from shale source rocks, radioactive waste isolation in a tight rock repository, and caprock integrity of a subsurface gas (CO<sub>2</sub>, H<sub>2</sub> or CH<sub>4</sub>) storage system. It may also help develop a new engineering approach to fluid injection into or extraction from unconventional reservoirs.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100600"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear-induced fluid localization, episodic fluid release and porosity wave in deformable low-permeability rock salt\",\"authors\":\"Yifeng Wang , Hua Shao , Kristopher L. Kuhlman , Carlos F. Jove-Colon , Olaf Kolditz\",\"doi\":\"10.1016/j.gete.2024.100600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding fluid distribution and migration in deformable low-permeability rock salt is critical for geologic disposal of nuclear waste. Field observations indicate that fluids in a salt formation are likely compartmentalized into relatively isolated patches and fluid release from such a formation is generally episodic. The underlying mechanism for these phenomena remains poorly understood. In this paper, a hydrological-mechanical model is formulated for fluid percolation in a rock salt formation under a deviatoric stress. Using a linear stability analysis, we show that a porosity wave (a train of alternating high and low porosity pockets) can emerge from positive feedbacks among intergranular wetting, grain boundary weakening and shear-induced material dilatancy. Fluid localization or episodic release can be viewed as a stationary or propagating porosity wave respectively. Fluid pockets transported via a porosity wave remain relatively isolated with minimal mixing between neighboring pockets. We further show that the velocity of fluid flow can be significantly enhanced by the emergence of a porosity wave. The concept and the related model presented in this paper provide a unified consistent explanation for the key features observed in fluid flow in rock salt. The similar process is expected to occur in other deformable low-permeability media such as shale and partially molten rocks under a deviatoric stress. Thus, the result presented here has an important implication to hydrocarbon expulsion from shale source rocks, radioactive waste isolation in a tight rock repository, and caprock integrity of a subsurface gas (CO<sub>2</sub>, H<sub>2</sub> or CH<sub>4</sub>) storage system. It may also help develop a new engineering approach to fluid injection into or extraction from unconventional reservoirs.</div></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"40 \",\"pages\":\"Article 100600\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380824000674\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000674","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Shear-induced fluid localization, episodic fluid release and porosity wave in deformable low-permeability rock salt
Understanding fluid distribution and migration in deformable low-permeability rock salt is critical for geologic disposal of nuclear waste. Field observations indicate that fluids in a salt formation are likely compartmentalized into relatively isolated patches and fluid release from such a formation is generally episodic. The underlying mechanism for these phenomena remains poorly understood. In this paper, a hydrological-mechanical model is formulated for fluid percolation in a rock salt formation under a deviatoric stress. Using a linear stability analysis, we show that a porosity wave (a train of alternating high and low porosity pockets) can emerge from positive feedbacks among intergranular wetting, grain boundary weakening and shear-induced material dilatancy. Fluid localization or episodic release can be viewed as a stationary or propagating porosity wave respectively. Fluid pockets transported via a porosity wave remain relatively isolated with minimal mixing between neighboring pockets. We further show that the velocity of fluid flow can be significantly enhanced by the emergence of a porosity wave. The concept and the related model presented in this paper provide a unified consistent explanation for the key features observed in fluid flow in rock salt. The similar process is expected to occur in other deformable low-permeability media such as shale and partially molten rocks under a deviatoric stress. Thus, the result presented here has an important implication to hydrocarbon expulsion from shale source rocks, radioactive waste isolation in a tight rock repository, and caprock integrity of a subsurface gas (CO2, H2 or CH4) storage system. It may also help develop a new engineering approach to fluid injection into or extraction from unconventional reservoirs.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.