将迭代正则化高斯-牛顿法应用于计算流体力学中的参数识别问题

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-09-19 DOI:10.1016/j.compfluid.2024.106438
Stefan Langer
{"title":"将迭代正则化高斯-牛顿法应用于计算流体力学中的参数识别问题","authors":"Stefan Langer","doi":"10.1016/j.compfluid.2024.106438","DOIUrl":null,"url":null,"abstract":"<div><div>Field Inversion and Machine Learning is an active field of research in <strong>C</strong>omputational <strong>F</strong>luid <strong>D</strong>ynamics (CFD). This approach can be leveraged to obtain a closed-form correction for a given turbulence model to improve the predictions. The fundamental approach is to insert a parameter into the system of RANS equations and determine it in a way such that, for example, a given pressure distribution is better approximated compared to the one obtained with the original set of equations. The goal of this article is twofold. Numerical arguments are presented that these kinds of problems can be severely ill-posed. In the second part, an approach is presented to directly reconstruct the turbulent viscosity field along with an example. The <strong>I</strong>teratively <strong>R</strong>egularized <strong>G</strong>auss-<strong>N</strong>ewton <strong>M</strong>ethod (IRGNM) is used for a realization. The construction of a problem-adapted norm for a finite volume method is presented. Finally, an outlook is presented on how this approach can be used to possibly modify or improve turbulence models such that not only one, but a larger number of test cases are considered.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"284 ","pages":"Article 106438"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the iteratively regularized Gauss–Newton method to parameter identification problems in Computational Fluid Dynamics\",\"authors\":\"Stefan Langer\",\"doi\":\"10.1016/j.compfluid.2024.106438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Field Inversion and Machine Learning is an active field of research in <strong>C</strong>omputational <strong>F</strong>luid <strong>D</strong>ynamics (CFD). This approach can be leveraged to obtain a closed-form correction for a given turbulence model to improve the predictions. The fundamental approach is to insert a parameter into the system of RANS equations and determine it in a way such that, for example, a given pressure distribution is better approximated compared to the one obtained with the original set of equations. The goal of this article is twofold. Numerical arguments are presented that these kinds of problems can be severely ill-posed. In the second part, an approach is presented to directly reconstruct the turbulent viscosity field along with an example. The <strong>I</strong>teratively <strong>R</strong>egularized <strong>G</strong>auss-<strong>N</strong>ewton <strong>M</strong>ethod (IRGNM) is used for a realization. The construction of a problem-adapted norm for a finite volume method is presented. Finally, an outlook is presented on how this approach can be used to possibly modify or improve turbulence models such that not only one, but a larger number of test cases are considered.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"284 \",\"pages\":\"Article 106438\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004579302400269X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579302400269X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

场反演和机器学习是计算流体动力学(CFD)的一个活跃研究领域。利用这种方法可以获得给定湍流模型的闭式修正,从而改进预测结果。其基本方法是在 RANS 方程系统中插入一个参数,并以某种方式确定该参数,例如,与使用原始方程组获得的参数相比,可以更好地近似给定的压力分布。本文的目标有两个。首先,通过数值论证,说明这类问题可能存在严重的求解困难。第二部分将介绍一种直接重建湍流粘度场的方法,并举例说明。使用迭代正则化高斯-牛顿法(IRGNM)来实现。还介绍了有限体积法的问题适应规范的构建。最后,展望了如何利用这种方法来修改或改进湍流模型,以便不仅考虑一个测试案例,而且考虑更多的测试案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of the iteratively regularized Gauss–Newton method to parameter identification problems in Computational Fluid Dynamics
Field Inversion and Machine Learning is an active field of research in Computational Fluid Dynamics (CFD). This approach can be leveraged to obtain a closed-form correction for a given turbulence model to improve the predictions. The fundamental approach is to insert a parameter into the system of RANS equations and determine it in a way such that, for example, a given pressure distribution is better approximated compared to the one obtained with the original set of equations. The goal of this article is twofold. Numerical arguments are presented that these kinds of problems can be severely ill-posed. In the second part, an approach is presented to directly reconstruct the turbulent viscosity field along with an example. The Iteratively Regularized Gauss-Newton Method (IRGNM) is used for a realization. The construction of a problem-adapted norm for a finite volume method is presented. Finally, an outlook is presented on how this approach can be used to possibly modify or improve turbulence models such that not only one, but a larger number of test cases are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Editorial Board Efficient quantum lattice gas automata Energy-consistent discretization of viscous dissipation with application to natural convection flow The numerical analysis of complete and partial electrocoalescence in the droplet-layer system employing the sharp interface technique for multiphase-medium simulation Numerical investigation on the end effects of the flow past a finite rotating circular cylinder with two free ends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1