Obulesu Mopuri , Kamel Al-Khaled , Vediyappan Govindan , Charankumar Ganteda , Aruna Ganjikunta , Barno Abdullaeva , Furqan Ahmad , Sami Ullah Khan , M. Waqas , D. Piriadarshani
{"title":"带有粘性耗散和对齐磁场应用的倾斜表面上的对流扩散热流","authors":"Obulesu Mopuri , Kamel Al-Khaled , Vediyappan Govindan , Charankumar Ganteda , Aruna Ganjikunta , Barno Abdullaeva , Furqan Ahmad , Sami Ullah Khan , M. Waqas , D. Piriadarshani","doi":"10.1016/j.padiff.2024.100924","DOIUrl":null,"url":null,"abstract":"<div><div>This investigation incorporating the fluctuation in heat and mass transfer associated to the mixed convection magnetized flow of viscous fluid due to inclined surface with porous media. The contribution of Soret effects and viscous dissipation appliances is addressed. Furthermore, the heat transfer improvement is also assessed by thermal radiation, heat source and joule heating effects. The chemical reaction enrollment is also studied for concentration phenomenon. The convection of problem into non-dimensional framework is based on implication of new variables. The perturbation technique is followed to tracking the analytical outcomes. Physical visualization and interpretation of results under the influence of perturbed parameters have been studied. It is observed that heat and mass transfer enhances due to Soret number. Presence of chemical reaction leads to decrement of concentration profile. Claimed results presents applications in heat and mass transfer processes, chemical reaction, manufacturing systems, chemical engineering, extrusion processes etc.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100924"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convective diffusive thermal flow over an inclined surface with viscous dissipation and aligned magnetic field applications\",\"authors\":\"Obulesu Mopuri , Kamel Al-Khaled , Vediyappan Govindan , Charankumar Ganteda , Aruna Ganjikunta , Barno Abdullaeva , Furqan Ahmad , Sami Ullah Khan , M. Waqas , D. Piriadarshani\",\"doi\":\"10.1016/j.padiff.2024.100924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This investigation incorporating the fluctuation in heat and mass transfer associated to the mixed convection magnetized flow of viscous fluid due to inclined surface with porous media. The contribution of Soret effects and viscous dissipation appliances is addressed. Furthermore, the heat transfer improvement is also assessed by thermal radiation, heat source and joule heating effects. The chemical reaction enrollment is also studied for concentration phenomenon. The convection of problem into non-dimensional framework is based on implication of new variables. The perturbation technique is followed to tracking the analytical outcomes. Physical visualization and interpretation of results under the influence of perturbed parameters have been studied. It is observed that heat and mass transfer enhances due to Soret number. Presence of chemical reaction leads to decrement of concentration profile. Claimed results presents applications in heat and mass transfer processes, chemical reaction, manufacturing systems, chemical engineering, extrusion processes etc.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100924\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Convective diffusive thermal flow over an inclined surface with viscous dissipation and aligned magnetic field applications
This investigation incorporating the fluctuation in heat and mass transfer associated to the mixed convection magnetized flow of viscous fluid due to inclined surface with porous media. The contribution of Soret effects and viscous dissipation appliances is addressed. Furthermore, the heat transfer improvement is also assessed by thermal radiation, heat source and joule heating effects. The chemical reaction enrollment is also studied for concentration phenomenon. The convection of problem into non-dimensional framework is based on implication of new variables. The perturbation technique is followed to tracking the analytical outcomes. Physical visualization and interpretation of results under the influence of perturbed parameters have been studied. It is observed that heat and mass transfer enhances due to Soret number. Presence of chemical reaction leads to decrement of concentration profile. Claimed results presents applications in heat and mass transfer processes, chemical reaction, manufacturing systems, chemical engineering, extrusion processes etc.