L. Tan , X.G. Yang , D.Q. Shi , W.Q. Huang , S.Q. Lyu , Y.S. Fan
{"title":"微结构筏化对镍基单晶超合金高温低循环疲劳过程中的变形行为和裂纹机制的影响","authors":"L. Tan , X.G. Yang , D.Q. Shi , W.Q. Huang , S.Q. Lyu , Y.S. Fan","doi":"10.1016/j.ijfatigue.2024.108619","DOIUrl":null,"url":null,"abstract":"<div><div>The low cycle fatigue behaviours of a microstructure rafting Ni-based single crystal superalloy have been experimentally investigated at 980 ℃. Deformation of γ/γ’ phases and the corresponding dislocation configurations were investigated, highlighting rafting γ/γ’ morphology that contributes to crack initiation and propagation, as well as macro-scale accumulated plastic strain. Unlike the discrete slip lines of a virgin superalloy, intense slips developed along the parallel {111} slip plane result in crossed slip bands in the rafting superalloy. The decreased resistance of widened γ channels to dislocation movement, along with the prevention of dislocation cutting through γ’ precipitates in pre-existing dense dislocation networks, facilitates crack propagation in the γ channel in the slightly rafting superalloy. As the rafting state increases, the dislocation network loses its protective effect by reducing coherency stress and acting as a superdislocation source, which facilitates crack propagation along the γ/γ’ interface. Finally, a microstructure-based fatigue model is developed considering the reduction of deformation resistance induced by rafting. The fatigue loading control mode effect is introduced by a combination of resolved shear stress and tensile stress effects on crack initiation. The LCF life of rafting Ni-based superalloys significantly decreases under stress-controlled conditions compared to strain-controlled conditions due to the increase in cumulative plastic strain. However, the insignificant impact of the initial surface oxide layer on LCF life is revealed.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108619"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of microstructure rafting on deformation behaviour and crack mechanism during high-temperature low-cycle fatigue of a Ni-based single crystal superalloy\",\"authors\":\"L. Tan , X.G. Yang , D.Q. Shi , W.Q. Huang , S.Q. Lyu , Y.S. Fan\",\"doi\":\"10.1016/j.ijfatigue.2024.108619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The low cycle fatigue behaviours of a microstructure rafting Ni-based single crystal superalloy have been experimentally investigated at 980 ℃. Deformation of γ/γ’ phases and the corresponding dislocation configurations were investigated, highlighting rafting γ/γ’ morphology that contributes to crack initiation and propagation, as well as macro-scale accumulated plastic strain. Unlike the discrete slip lines of a virgin superalloy, intense slips developed along the parallel {111} slip plane result in crossed slip bands in the rafting superalloy. The decreased resistance of widened γ channels to dislocation movement, along with the prevention of dislocation cutting through γ’ precipitates in pre-existing dense dislocation networks, facilitates crack propagation in the γ channel in the slightly rafting superalloy. As the rafting state increases, the dislocation network loses its protective effect by reducing coherency stress and acting as a superdislocation source, which facilitates crack propagation along the γ/γ’ interface. Finally, a microstructure-based fatigue model is developed considering the reduction of deformation resistance induced by rafting. The fatigue loading control mode effect is introduced by a combination of resolved shear stress and tensile stress effects on crack initiation. The LCF life of rafting Ni-based superalloys significantly decreases under stress-controlled conditions compared to strain-controlled conditions due to the increase in cumulative plastic strain. However, the insignificant impact of the initial surface oxide layer on LCF life is revealed.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"190 \",\"pages\":\"Article 108619\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014211232400478X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014211232400478X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of microstructure rafting on deformation behaviour and crack mechanism during high-temperature low-cycle fatigue of a Ni-based single crystal superalloy
The low cycle fatigue behaviours of a microstructure rafting Ni-based single crystal superalloy have been experimentally investigated at 980 ℃. Deformation of γ/γ’ phases and the corresponding dislocation configurations were investigated, highlighting rafting γ/γ’ morphology that contributes to crack initiation and propagation, as well as macro-scale accumulated plastic strain. Unlike the discrete slip lines of a virgin superalloy, intense slips developed along the parallel {111} slip plane result in crossed slip bands in the rafting superalloy. The decreased resistance of widened γ channels to dislocation movement, along with the prevention of dislocation cutting through γ’ precipitates in pre-existing dense dislocation networks, facilitates crack propagation in the γ channel in the slightly rafting superalloy. As the rafting state increases, the dislocation network loses its protective effect by reducing coherency stress and acting as a superdislocation source, which facilitates crack propagation along the γ/γ’ interface. Finally, a microstructure-based fatigue model is developed considering the reduction of deformation resistance induced by rafting. The fatigue loading control mode effect is introduced by a combination of resolved shear stress and tensile stress effects on crack initiation. The LCF life of rafting Ni-based superalloys significantly decreases under stress-controlled conditions compared to strain-controlled conditions due to the increase in cumulative plastic strain. However, the insignificant impact of the initial surface oxide layer on LCF life is revealed.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.