{"title":"具有纳米颗粒聚集体的铁磁性复合材料铁/环氧树脂中的微波:理论与实验","authors":"D.V. Perov , Yu.V. Korkh , E.A. Kuznetsov , O.V. Nemytova , A.B. Rinkevich , M.A. Uimin , A.S. Konev","doi":"10.1016/j.photonics.2024.101311","DOIUrl":null,"url":null,"abstract":"<div><div>Microwave transmission through plates of a composite material containing spherical Fe nanoparticles in an epoxyamine matrix and reflection from plates have been studied. Measurements were carried out at the frequencies from 26 to 32 GHz in the magnetic fields up to 12 kOe. The ferromagnetic resonance phenomenon in the composite has been investigated. The theory of electromagnetic waves transmitting through a composite material containing ferromagnetic particles, taking into account aggregating the particles, has been developed. A good agreement of calculation results and experimentally obtained field dependences of the transmission and reflection coefficients, as well as microwaves dissipation, has been achieved.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101311"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwaves in ferromagnetic composites Fe/Epoxy with aggregates of nanoparticles: Theory and experiment\",\"authors\":\"D.V. Perov , Yu.V. Korkh , E.A. Kuznetsov , O.V. Nemytova , A.B. Rinkevich , M.A. Uimin , A.S. Konev\",\"doi\":\"10.1016/j.photonics.2024.101311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microwave transmission through plates of a composite material containing spherical Fe nanoparticles in an epoxyamine matrix and reflection from plates have been studied. Measurements were carried out at the frequencies from 26 to 32 GHz in the magnetic fields up to 12 kOe. The ferromagnetic resonance phenomenon in the composite has been investigated. The theory of electromagnetic waves transmitting through a composite material containing ferromagnetic particles, taking into account aggregating the particles, has been developed. A good agreement of calculation results and experimentally obtained field dependences of the transmission and reflection coefficients, as well as microwaves dissipation, has been achieved.</div></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"62 \",\"pages\":\"Article 101311\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441024000865\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000865","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
研究了微波通过环氧胺基体中含有球形铁纳米颗粒的复合材料板的传输以及从板上的反射。测量是在磁场高达 12 kOe 的 26 至 32 GHz 频率下进行的。研究了复合材料中的铁磁共振现象。在考虑到颗粒聚集的情况下,建立了电磁波通过含有铁磁性颗粒的复合材料传输的理论。计算结果与实验获得的透射和反射系数以及微波耗散的场相关性非常吻合。
Microwaves in ferromagnetic composites Fe/Epoxy with aggregates of nanoparticles: Theory and experiment
Microwave transmission through plates of a composite material containing spherical Fe nanoparticles in an epoxyamine matrix and reflection from plates have been studied. Measurements were carried out at the frequencies from 26 to 32 GHz in the magnetic fields up to 12 kOe. The ferromagnetic resonance phenomenon in the composite has been investigated. The theory of electromagnetic waves transmitting through a composite material containing ferromagnetic particles, taking into account aggregating the particles, has been developed. A good agreement of calculation results and experimentally obtained field dependences of the transmission and reflection coefficients, as well as microwaves dissipation, has been achieved.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.