{"title":"对向低碳能源过渡过程中金属依赖性的战略分析:利用国际能源机构的未来情景对镍、钴、锂、石墨和铜的稀缺性进行批判性研究","authors":"Sa'd Shannak, Logan Cochrane, Daria Bobarykina","doi":"10.1016/j.erss.2024.103773","DOIUrl":null,"url":null,"abstract":"<div><div>The 2023 edition of the IPCC document provides a thorough examination of the complex relationship between global energy infrastructure and essential mineral resources. It is crucial to adopt a comprehensive and proactive stance to understand and address the growing environmental challenges associated with energy production and consumption. This addresses the supply and demand scenarios of critical minerals, specifically nickel, cobalt, lithium, graphite, and copper, and examines their roles across diverse applications beyond clean energy technologies. Applying scenarios from the International Energy Agency (IEA) established in 2023, we conducted a comparative analysis to determine whether future use could impact their availability, ensuring that there is an adequate supply for all applications, not just clean technologies, in the years to come. We applied a holistic strategy that integrates technological innovation with policy ingenuity to guide society towards a sustainable reduction in its carbon footprint. Our objectives include: (1) to evaluate the potential effects of the widespread adoption of various technologies on future demand for these critical minerals, utilizing the IEA's 2023 scenarios; (2) Investigating Scarcity Risks and Demand Growth Dynamics; and (3) pinpointing specific minerals that require immediate and strategic attention to prevent potential shortages. Our findings show that demand scenarios differ by minerals and metals, identifying each of the risks and policies to address them. By contributing to the IPCC's ongoing efforts to combat climate change, this study underscores the vital importance of making informed decisions, fostering technological innovations, and implementing robust policies to successfully navigate the transition to a sustainable, low-carbon society.</div></div>","PeriodicalId":48384,"journal":{"name":"Energy Research & Social Science","volume":"118 ","pages":"Article 103773"},"PeriodicalIF":6.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic analysis of metal dependency in the transition to low-carbon energy: A critical examination of nickel, cobalt, lithium, graphite, and copper scarcity using IEA future scenarios\",\"authors\":\"Sa'd Shannak, Logan Cochrane, Daria Bobarykina\",\"doi\":\"10.1016/j.erss.2024.103773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The 2023 edition of the IPCC document provides a thorough examination of the complex relationship between global energy infrastructure and essential mineral resources. It is crucial to adopt a comprehensive and proactive stance to understand and address the growing environmental challenges associated with energy production and consumption. This addresses the supply and demand scenarios of critical minerals, specifically nickel, cobalt, lithium, graphite, and copper, and examines their roles across diverse applications beyond clean energy technologies. Applying scenarios from the International Energy Agency (IEA) established in 2023, we conducted a comparative analysis to determine whether future use could impact their availability, ensuring that there is an adequate supply for all applications, not just clean technologies, in the years to come. We applied a holistic strategy that integrates technological innovation with policy ingenuity to guide society towards a sustainable reduction in its carbon footprint. Our objectives include: (1) to evaluate the potential effects of the widespread adoption of various technologies on future demand for these critical minerals, utilizing the IEA's 2023 scenarios; (2) Investigating Scarcity Risks and Demand Growth Dynamics; and (3) pinpointing specific minerals that require immediate and strategic attention to prevent potential shortages. Our findings show that demand scenarios differ by minerals and metals, identifying each of the risks and policies to address them. By contributing to the IPCC's ongoing efforts to combat climate change, this study underscores the vital importance of making informed decisions, fostering technological innovations, and implementing robust policies to successfully navigate the transition to a sustainable, low-carbon society.</div></div>\",\"PeriodicalId\":48384,\"journal\":{\"name\":\"Energy Research & Social Science\",\"volume\":\"118 \",\"pages\":\"Article 103773\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Research & Social Science\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214629624003645\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Research & Social Science","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214629624003645","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Strategic analysis of metal dependency in the transition to low-carbon energy: A critical examination of nickel, cobalt, lithium, graphite, and copper scarcity using IEA future scenarios
The 2023 edition of the IPCC document provides a thorough examination of the complex relationship between global energy infrastructure and essential mineral resources. It is crucial to adopt a comprehensive and proactive stance to understand and address the growing environmental challenges associated with energy production and consumption. This addresses the supply and demand scenarios of critical minerals, specifically nickel, cobalt, lithium, graphite, and copper, and examines their roles across diverse applications beyond clean energy technologies. Applying scenarios from the International Energy Agency (IEA) established in 2023, we conducted a comparative analysis to determine whether future use could impact their availability, ensuring that there is an adequate supply for all applications, not just clean technologies, in the years to come. We applied a holistic strategy that integrates technological innovation with policy ingenuity to guide society towards a sustainable reduction in its carbon footprint. Our objectives include: (1) to evaluate the potential effects of the widespread adoption of various technologies on future demand for these critical minerals, utilizing the IEA's 2023 scenarios; (2) Investigating Scarcity Risks and Demand Growth Dynamics; and (3) pinpointing specific minerals that require immediate and strategic attention to prevent potential shortages. Our findings show that demand scenarios differ by minerals and metals, identifying each of the risks and policies to address them. By contributing to the IPCC's ongoing efforts to combat climate change, this study underscores the vital importance of making informed decisions, fostering technological innovations, and implementing robust policies to successfully navigate the transition to a sustainable, low-carbon society.
期刊介绍:
Energy Research & Social Science (ERSS) is a peer-reviewed international journal that publishes original research and review articles examining the relationship between energy systems and society. ERSS covers a range of topics revolving around the intersection of energy technologies, fuels, and resources on one side and social processes and influences - including communities of energy users, people affected by energy production, social institutions, customs, traditions, behaviors, and policies - on the other. Put another way, ERSS investigates the social system surrounding energy technology and hardware. ERSS is relevant for energy practitioners, researchers interested in the social aspects of energy production or use, and policymakers.
Energy Research & Social Science (ERSS) provides an interdisciplinary forum to discuss how social and technical issues related to energy production and consumption interact. Energy production, distribution, and consumption all have both technical and human components, and the latter involves the human causes and consequences of energy-related activities and processes as well as social structures that shape how people interact with energy systems. Energy analysis, therefore, needs to look beyond the dimensions of technology and economics to include these social and human elements.