自动化纤维铺放和长丝缠绕技术最新进展简评

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY Composites Part B: Engineering Pub Date : 2024-09-21 DOI:10.1016/j.compositesb.2024.111843
Stefan Carosella, Sebastian Hügle, Florian Helber, Peter Middendorf
{"title":"自动化纤维铺放和长丝缠绕技术最新进展简评","authors":"Stefan Carosella,&nbsp;Sebastian Hügle,&nbsp;Florian Helber,&nbsp;Peter Middendorf","doi":"10.1016/j.compositesb.2024.111843","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in Automated Fiber Placement (AFP) and Filament Winding (FM) are driving steady improvements in technological understanding, enabling the production of more precise, cost- and material-efficient layups that pave the way for new applications. Evolving from automated Tape Laying Technology (ATL), AFP is a technology that not only mimics the manual laying process but also allows tailored fiber and tow alignment to deliver load-optimized patterns, stacking sequences and part structures leading to improved mechanical performance and significant waste reduction. The filament winding evolution towards automated Robotic Filament Winding put the technology in a position to manufacture highly complex lightweight structures in architecture. In this short review, recent developments in both automated fiber alignment technologies are presented and discussed, including the main advantages and materials used. Regarding the ATL and AFP process, developments in non-aerospace applications are considered. Besides a short overview of new placement technologies, advances in Tailored Fiber Placement (TFP) in the field of dry fiber placement are reported. Finally, new robotic filament winding applications in free-form and Coreless Filament Winding (CFW) in architecture are presented.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"287 ","pages":"Article 111843"},"PeriodicalIF":12.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A short review on recent advances in automated fiber placement and filament winding technologies\",\"authors\":\"Stefan Carosella,&nbsp;Sebastian Hügle,&nbsp;Florian Helber,&nbsp;Peter Middendorf\",\"doi\":\"10.1016/j.compositesb.2024.111843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advances in Automated Fiber Placement (AFP) and Filament Winding (FM) are driving steady improvements in technological understanding, enabling the production of more precise, cost- and material-efficient layups that pave the way for new applications. Evolving from automated Tape Laying Technology (ATL), AFP is a technology that not only mimics the manual laying process but also allows tailored fiber and tow alignment to deliver load-optimized patterns, stacking sequences and part structures leading to improved mechanical performance and significant waste reduction. The filament winding evolution towards automated Robotic Filament Winding put the technology in a position to manufacture highly complex lightweight structures in architecture. In this short review, recent developments in both automated fiber alignment technologies are presented and discussed, including the main advantages and materials used. Regarding the ATL and AFP process, developments in non-aerospace applications are considered. Besides a short overview of new placement technologies, advances in Tailored Fiber Placement (TFP) in the field of dry fiber placement are reported. Finally, new robotic filament winding applications in free-form and Coreless Filament Winding (CFW) in architecture are presented.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"287 \",\"pages\":\"Article 111843\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824006553\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824006553","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自动纤维铺放(AFP)和长丝缠绕(FM)技术的最新进展推动了技术认识的稳步提高,使生产更精确、更节约成本和材料的铺放成为可能,为新应用铺平了道路。从自动铺带技术(ATL)发展而来的 AFP 技术,不仅能模仿人工铺带工艺,还能实现定制的纤维和丝束排列,提供负载优化的图案、堆叠顺序和零件结构,从而提高机械性能并显著减少废料。长丝缠绕技术向自动化机器人长丝缠绕技术发展,使该技术能够制造高度复杂的轻质建筑结构。在这篇简短的综述中,介绍并讨论了这两种自动化纤维排列技术的最新发展,包括主要优势和使用的材料。在 ATL 和 AFP 工艺方面,考虑了非航空应用的发展。除了简要介绍新的铺放技术外,还报告了干纤维铺放领域中定制纤维铺放(TFP)的进展情况。最后,还介绍了建筑中自由成型和无芯绕丝(CFW)的新型机器人绕丝应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A short review on recent advances in automated fiber placement and filament winding technologies
Recent advances in Automated Fiber Placement (AFP) and Filament Winding (FM) are driving steady improvements in technological understanding, enabling the production of more precise, cost- and material-efficient layups that pave the way for new applications. Evolving from automated Tape Laying Technology (ATL), AFP is a technology that not only mimics the manual laying process but also allows tailored fiber and tow alignment to deliver load-optimized patterns, stacking sequences and part structures leading to improved mechanical performance and significant waste reduction. The filament winding evolution towards automated Robotic Filament Winding put the technology in a position to manufacture highly complex lightweight structures in architecture. In this short review, recent developments in both automated fiber alignment technologies are presented and discussed, including the main advantages and materials used. Regarding the ATL and AFP process, developments in non-aerospace applications are considered. Besides a short overview of new placement technologies, advances in Tailored Fiber Placement (TFP) in the field of dry fiber placement are reported. Finally, new robotic filament winding applications in free-form and Coreless Filament Winding (CFW) in architecture are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
期刊最新文献
Spider web-inspired sericin/polyacrylamide composite hydrogel with super-low hysteresis for monitoring penalty of sports competition Engineered dECM-based microsystem promotes cartilage regeneration in osteoarthritis by synergistically enhancing chondrogenesis of BMSCs and anti-inflammatory effect On demand thermal surface modification of carbon fiber for improved interfacial shear strength Personalized customization of in-plane thermal conductive networks by a novel electrospinning method Microchannels-enabled vertical alignment of hexagonal boron nitride in silicone rubber composites to achieve high through-plane thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1