磁性纳米粒子分布对通过热疗治疗癌症的影响

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Thermal Sciences Pub Date : 2024-09-27 DOI:10.1016/j.ijthermalsci.2024.109428
{"title":"磁性纳米粒子分布对通过热疗治疗癌症的影响","authors":"","doi":"10.1016/j.ijthermalsci.2024.109428","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic hyperthermia (MHT) is a promising cancer treatment that exploits the heating capabilities of magnetic nanoparticles (MNPs) when exposed to alternating magnetic fields. The primary challenge in optimizing MHT lies in understanding the influence of MNP distribution within the tumor microenvironment. This study presents realistic simulations of MNP distribution within a tumor, accounting for diffusion, convection, and internalization dynamics, alongside the presence of a necrotic core. Additionally, a vascular network was modeled based on diagnostic images to assess its impact on nanoparticle behavior and heat generation within the tumor. Our results show that uneven MNP distribution, particularly in areas influenced by the tumor's vasculature and necrotic regions, results in highly variable temperature profiles and irregular thermal damage. By contrast, a more uniform distribution of MNPs leads to a consistent rise in temperature and a broader region of thermal damage, with maximum temperatures reaching 47 °C and 99 % tumor cell death after 60 min of treatment. Key quantitative findings indicate that the tumor's vascular architecture plays a crucial role in determining the heat distribution and treatment efficacy. This study highlights the importance of fine-tuning MNP delivery and distribution to maximize therapeutic outcomes in MHT. The approach offers significant potential for applications in treating deep-seated or inoperable tumors, where precise and localized therapy is critical.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of magnetic nanoparticle distribution in cancer therapy through hyperthermia\",\"authors\":\"\",\"doi\":\"10.1016/j.ijthermalsci.2024.109428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnetic hyperthermia (MHT) is a promising cancer treatment that exploits the heating capabilities of magnetic nanoparticles (MNPs) when exposed to alternating magnetic fields. The primary challenge in optimizing MHT lies in understanding the influence of MNP distribution within the tumor microenvironment. This study presents realistic simulations of MNP distribution within a tumor, accounting for diffusion, convection, and internalization dynamics, alongside the presence of a necrotic core. Additionally, a vascular network was modeled based on diagnostic images to assess its impact on nanoparticle behavior and heat generation within the tumor. Our results show that uneven MNP distribution, particularly in areas influenced by the tumor's vasculature and necrotic regions, results in highly variable temperature profiles and irregular thermal damage. By contrast, a more uniform distribution of MNPs leads to a consistent rise in temperature and a broader region of thermal damage, with maximum temperatures reaching 47 °C and 99 % tumor cell death after 60 min of treatment. Key quantitative findings indicate that the tumor's vascular architecture plays a crucial role in determining the heat distribution and treatment efficacy. This study highlights the importance of fine-tuning MNP delivery and distribution to maximize therapeutic outcomes in MHT. The approach offers significant potential for applications in treating deep-seated or inoperable tumors, where precise and localized therapy is critical.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924005507\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924005507","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

磁性热疗(MHT)是一种很有前景的癌症治疗方法,它利用了磁性纳米粒子(MNPs)在暴露于交变磁场时的加热能力。优化 MHT 的主要挑战在于了解 MNP 在肿瘤微环境中分布的影响。本研究对 MNP 在肿瘤内的分布进行了逼真的模拟,考虑到了扩散、对流和内化动力学以及坏死核心的存在。此外,还根据诊断图像对血管网络进行了建模,以评估其对纳米粒子行为和肿瘤内发热的影响。我们的研究结果表明,不均匀的 MNP 分布,尤其是在受肿瘤血管和坏死区域影响的区域,会导致温度曲线的高度变化和不规则的热损伤。相比之下,分布更均匀的 MNP 会导致温度持续上升,热损伤区域更广,最高温度可达 47 °C,治疗 60 分钟后肿瘤细胞死亡 99%。主要的定量研究结果表明,肿瘤的血管结构在决定热分布和治疗效果方面起着至关重要的作用。这项研究强调了微调 MNP 递送和分布以最大限度地提高 MHT 治疗效果的重要性。这种方法在治疗深部肿瘤或无法手术的肿瘤方面具有巨大的应用潜力,在这些肿瘤中,精确的局部治疗至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of magnetic nanoparticle distribution in cancer therapy through hyperthermia
Magnetic hyperthermia (MHT) is a promising cancer treatment that exploits the heating capabilities of magnetic nanoparticles (MNPs) when exposed to alternating magnetic fields. The primary challenge in optimizing MHT lies in understanding the influence of MNP distribution within the tumor microenvironment. This study presents realistic simulations of MNP distribution within a tumor, accounting for diffusion, convection, and internalization dynamics, alongside the presence of a necrotic core. Additionally, a vascular network was modeled based on diagnostic images to assess its impact on nanoparticle behavior and heat generation within the tumor. Our results show that uneven MNP distribution, particularly in areas influenced by the tumor's vasculature and necrotic regions, results in highly variable temperature profiles and irregular thermal damage. By contrast, a more uniform distribution of MNPs leads to a consistent rise in temperature and a broader region of thermal damage, with maximum temperatures reaching 47 °C and 99 % tumor cell death after 60 min of treatment. Key quantitative findings indicate that the tumor's vascular architecture plays a crucial role in determining the heat distribution and treatment efficacy. This study highlights the importance of fine-tuning MNP delivery and distribution to maximize therapeutic outcomes in MHT. The approach offers significant potential for applications in treating deep-seated or inoperable tumors, where precise and localized therapy is critical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
期刊最新文献
A directional spectral emissivity measurement device with built-in calibration radiation source Experimental study on endwall film cooling performance of an adjustable guide vane Thin-film evaporation in microchannels: A combined analytical and computational fluid dynamics approach to assessing meniscus curvature impact Exact momentum layer and thermal field solutions for the fluid flow due to a moving/deforming Riga plate Flame instability and heat transfer effect during deflagration of premixed hydrogen in tunnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1