带垂直热辐射器的空腔中热物理特性可变的牛顿和非牛顿混合纳米流体的级联晶格玻尔兹曼模拟

Q1 Chemical Engineering International Journal of Thermofluids Pub Date : 2024-09-21 DOI:10.1016/j.ijft.2024.100865
{"title":"带垂直热辐射器的空腔中热物理特性可变的牛顿和非牛顿混合纳米流体的级联晶格玻尔兹曼模拟","authors":"","doi":"10.1016/j.ijft.2024.100865","DOIUrl":null,"url":null,"abstract":"<div><div>The central moments-based cascaded lattice Boltzmann method (CLBM) for then Newtonian and non-Newtonian Buongiorno’s model mixture nanofluids (CuO, ZnO, Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-water) has been implemented and applied in a square chamber with a vertical heat radiator using accelerated graphics processing unit (GPU) computing through compute unified device architecture (CUDA) C/C++ platform. Due to the higher numerical stability, the CLBM is a superior numerical tool to the raw moments-based MRT-LBM (multiple-relaxation-time lattice Boltzmann method). Three different models for the viscosity and thermal conductivity of the nanofluids: (i) the Binkmann model for the constant viscosity and the Maxwell model for the constant thermal conductivity (ii) Binkmann and Maxwell model with temperature dependent Brownian motion and (iii) Corcione model with non-Newtonian fluid where the temperature and strain rate determine the nanofluid effective thermal conductivity and viscosity, have been used. The enclosure’s upper and bottom walls are thermally adiabatic, but the left and right walls are uniformly cold. A vertical heater is immersed in the middle position of the cavity. The benchmark results for non-Newtonian, Newtonian, and nanofluids for the various computational domains are used to validate the current code adequately. The Bingham number (<span><math><mrow><mi>B</mi><mi>n</mi></mrow></math></span>), the Rayleigh number (<span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span>), and The volume fraction of the nanoparticles (<span><math><mi>ϕ</mi></math></span>) are the three key parameters that are varied in this investigation to demonstrate the effects of natural convection on the isotherms, streamlines, isolines of nanoparticle volume fractionation, yielded and unyeilded zone, and average Nusselt number (<span><math><mover><mrow><mi>N</mi><mi>u</mi></mrow><mo>¯</mo></mover></math></span>). The Brownian motion effects of the nanoparticles augmented the average rate of heat transfer and the use of the Bingham nanofluids reduced the heat transfer enhancement. For the CuO-water nanofluid, the augmentation of the rate of heat transfer is 15.42% from <span><math><mrow><mi>ϕ</mi><mo>=</mo><mn>0</mn></mrow></math></span> to 4% while <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> and the corresponding heat transfer enhancement for the ZnO-water nanofluid is 11.11%. For the Bingham fluid, the rate of heat transfer increases 7% from <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> while <span><math><mrow><mi>ϕ</mi><mo>=</mo><mn>2</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mi>B</mi><mi>n</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></math></span>. The findings can be applied to optimize automotive radiator systems, which are crucial for maintaining engine temperature.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cascaded lattice Boltzmann simulation of Newtonian and non-Newtonian mixture nanofluids with variable thermophysical properties in a cavity with vertical heat radiator\",\"authors\":\"\",\"doi\":\"10.1016/j.ijft.2024.100865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The central moments-based cascaded lattice Boltzmann method (CLBM) for then Newtonian and non-Newtonian Buongiorno’s model mixture nanofluids (CuO, ZnO, Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-water) has been implemented and applied in a square chamber with a vertical heat radiator using accelerated graphics processing unit (GPU) computing through compute unified device architecture (CUDA) C/C++ platform. Due to the higher numerical stability, the CLBM is a superior numerical tool to the raw moments-based MRT-LBM (multiple-relaxation-time lattice Boltzmann method). Three different models for the viscosity and thermal conductivity of the nanofluids: (i) the Binkmann model for the constant viscosity and the Maxwell model for the constant thermal conductivity (ii) Binkmann and Maxwell model with temperature dependent Brownian motion and (iii) Corcione model with non-Newtonian fluid where the temperature and strain rate determine the nanofluid effective thermal conductivity and viscosity, have been used. The enclosure’s upper and bottom walls are thermally adiabatic, but the left and right walls are uniformly cold. A vertical heater is immersed in the middle position of the cavity. The benchmark results for non-Newtonian, Newtonian, and nanofluids for the various computational domains are used to validate the current code adequately. The Bingham number (<span><math><mrow><mi>B</mi><mi>n</mi></mrow></math></span>), the Rayleigh number (<span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span>), and The volume fraction of the nanoparticles (<span><math><mi>ϕ</mi></math></span>) are the three key parameters that are varied in this investigation to demonstrate the effects of natural convection on the isotherms, streamlines, isolines of nanoparticle volume fractionation, yielded and unyeilded zone, and average Nusselt number (<span><math><mover><mrow><mi>N</mi><mi>u</mi></mrow><mo>¯</mo></mover></math></span>). The Brownian motion effects of the nanoparticles augmented the average rate of heat transfer and the use of the Bingham nanofluids reduced the heat transfer enhancement. For the CuO-water nanofluid, the augmentation of the rate of heat transfer is 15.42% from <span><math><mrow><mi>ϕ</mi><mo>=</mo><mn>0</mn></mrow></math></span> to 4% while <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> and the corresponding heat transfer enhancement for the ZnO-water nanofluid is 11.11%. For the Bingham fluid, the rate of heat transfer increases 7% from <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> while <span><math><mrow><mi>ϕ</mi><mo>=</mo><mn>2</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mi>B</mi><mi>n</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></math></span>. The findings can be applied to optimize automotive radiator systems, which are crucial for maintaining engine temperature.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202724003069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724003069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

通过计算统一设备架构(CUDA)C/C++ 平台,使用图形处理器(GPU)加速计算,对牛顿和非牛顿 Buongiorno 模型混合纳米流体(CuO、ZnO、Al2O3-水)实施并应用了基于中心矩的级联晶格玻尔兹曼方法(CLBM)。由于具有更高的数值稳定性,CLBM 是一种优于基于原始矩的 MRT-LBM(多松弛时间晶格玻尔兹曼法)的数值工具。纳米流体的粘度和热导率有三种不同的模型:(i) 恒定粘度的 Binkmann 模型和恒定热导率的 Maxwell 模型;(ii) 与温度相关的布朗运动的 Binkmann 和 Maxwell 模型;(iii) 非牛顿流体的 Corcione 模型,其中温度和应变率决定纳米流体的有效热导率和粘度。外壳的上壁和底壁是绝热的,但左壁和右壁是均冷的。一个垂直加热器浸没在空腔的中间位置。非牛顿流体、牛顿流体和纳米流体在不同计算域的基准结果用于充分验证当前的代码。宾厄姆数(Bn)、瑞利数(Ra)和纳米颗粒的体积分数(j)是本次研究中的三个关键参数,通过改变这三个参数来演示自然对流对等温线、流线、纳米颗粒体积分数隔离线、屈服区和未屈服区以及平均努塞尔特数(Nu¯)的影响。纳米粒子的布朗运动效应提高了平均传热速率,而使用宾汉纳米流体则降低了传热增强效果。对于 CuO-水纳米流体,当 Ra=106 时,从 ϕ=0 到 4% 的传热率提高了 15.42%,而 ZnO-水纳米流体的相应传热率提高了 11.11%。对于宾汉姆流体,当 ϕ=2% 和 Bn=0.3 时,传热率从 Ra=105 到 Ra=106 增加了 7%。研究结果可用于优化汽车散热器系统,该系统对保持发动机温度至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cascaded lattice Boltzmann simulation of Newtonian and non-Newtonian mixture nanofluids with variable thermophysical properties in a cavity with vertical heat radiator
The central moments-based cascaded lattice Boltzmann method (CLBM) for then Newtonian and non-Newtonian Buongiorno’s model mixture nanofluids (CuO, ZnO, Al2O3-water) has been implemented and applied in a square chamber with a vertical heat radiator using accelerated graphics processing unit (GPU) computing through compute unified device architecture (CUDA) C/C++ platform. Due to the higher numerical stability, the CLBM is a superior numerical tool to the raw moments-based MRT-LBM (multiple-relaxation-time lattice Boltzmann method). Three different models for the viscosity and thermal conductivity of the nanofluids: (i) the Binkmann model for the constant viscosity and the Maxwell model for the constant thermal conductivity (ii) Binkmann and Maxwell model with temperature dependent Brownian motion and (iii) Corcione model with non-Newtonian fluid where the temperature and strain rate determine the nanofluid effective thermal conductivity and viscosity, have been used. The enclosure’s upper and bottom walls are thermally adiabatic, but the left and right walls are uniformly cold. A vertical heater is immersed in the middle position of the cavity. The benchmark results for non-Newtonian, Newtonian, and nanofluids for the various computational domains are used to validate the current code adequately. The Bingham number (Bn), the Rayleigh number (Ra), and The volume fraction of the nanoparticles (ϕ) are the three key parameters that are varied in this investigation to demonstrate the effects of natural convection on the isotherms, streamlines, isolines of nanoparticle volume fractionation, yielded and unyeilded zone, and average Nusselt number (Nu¯). The Brownian motion effects of the nanoparticles augmented the average rate of heat transfer and the use of the Bingham nanofluids reduced the heat transfer enhancement. For the CuO-water nanofluid, the augmentation of the rate of heat transfer is 15.42% from ϕ=0 to 4% while Ra=106 and the corresponding heat transfer enhancement for the ZnO-water nanofluid is 11.11%. For the Bingham fluid, the rate of heat transfer increases 7% from Ra=105 to Ra=106 while ϕ=2% and Bn=0.3. The findings can be applied to optimize automotive radiator systems, which are crucial for maintaining engine temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
期刊最新文献
Optimized thermal pretreatment for lignocellulosic biomass of pigeon pea stalks to augment quality and quantity of biogas production Comparative numerical study on the effect of fin orientation on the photovoltaic/thermal (PV/T) system performance Thermodynamic and environmental comparative analysis of a dual loop ORC and Kalina as bottoming cycle of a solar Brayton sCO2 Simulation of flow dynamics and heat transfer behavior of nanofluid in microchannel with rough surfaces Thermo-hydraulic performance of concentric tube heat exchangers with turbulent flow: Predictive correlations and iterative methods for pumping power and heat transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1