基于哈希和症候解码(HSDec)优化硬解码器的空间复杂性

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES Scientific African Pub Date : 2024-09-18 DOI:10.1016/j.sciaf.2024.e02383
Seddiq El Kasmi Alaoui , Tarik Chanyour , Hamza Faham , Said Nouh
{"title":"基于哈希和症候解码(HSDec)优化硬解码器的空间复杂性","authors":"Seddiq El Kasmi Alaoui ,&nbsp;Tarik Chanyour ,&nbsp;Hamza Faham ,&nbsp;Said Nouh","doi":"10.1016/j.sciaf.2024.e02383","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we propose an optimized version of the Hard Decision Decoder based on Hash and Syndrome Decoding (HSDec) decoder, named Reduced Memory Space of HSDec (RMS-HSDec), which uses less memory space. In this article, we aim to reduce the spatial complexity of the HSDec decoding algorithm while preserving its error correction capabilities. Our methodology involves allocating only the essential memory space for correctable error patterns and optimizing the hashing mechanism to effectively handle potential collisions. While maintaining the integrity of error correction, this new method guarantees memory reduction rates of over 96 % for the BCH(63, 39, 9) code and over 84 % for the QR(47, 24, 11) code compared to HSDec. Simulations were conducted to evaluate the performance of RMS-HSDec on various BCH and QR codes over AWGN and Rayleigh channels. The results demonstrated significant memory reduction rates and coding gains ranging from 0.8 dB to 2.8 dB over the AWGN channel and from 14 dB to 32 dB over the Rayleigh channel, confirming the robustness of the algorithm under different channel conditions. Comparative analyses showed that RMS-HSDec maintains competitive performance with existing decoders while offering effective error correction. These findings confirm the robustness of the RMS-HSDec algorithm under different channel conditions. Overall, the proposed decoder proves to be an effective solution, optimizing memory usage without compromising error correction capabilities, making it ideal for high-density data applications and environments with limited memory resources.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"26 ","pages":"Article e02383"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Spatial Complexity of the Hard Decision Decoder Based on Hash and Syndrome Decoding (HSDec)\",\"authors\":\"Seddiq El Kasmi Alaoui ,&nbsp;Tarik Chanyour ,&nbsp;Hamza Faham ,&nbsp;Said Nouh\",\"doi\":\"10.1016/j.sciaf.2024.e02383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we propose an optimized version of the Hard Decision Decoder based on Hash and Syndrome Decoding (HSDec) decoder, named Reduced Memory Space of HSDec (RMS-HSDec), which uses less memory space. In this article, we aim to reduce the spatial complexity of the HSDec decoding algorithm while preserving its error correction capabilities. Our methodology involves allocating only the essential memory space for correctable error patterns and optimizing the hashing mechanism to effectively handle potential collisions. While maintaining the integrity of error correction, this new method guarantees memory reduction rates of over 96 % for the BCH(63, 39, 9) code and over 84 % for the QR(47, 24, 11) code compared to HSDec. Simulations were conducted to evaluate the performance of RMS-HSDec on various BCH and QR codes over AWGN and Rayleigh channels. The results demonstrated significant memory reduction rates and coding gains ranging from 0.8 dB to 2.8 dB over the AWGN channel and from 14 dB to 32 dB over the Rayleigh channel, confirming the robustness of the algorithm under different channel conditions. Comparative analyses showed that RMS-HSDec maintains competitive performance with existing decoders while offering effective error correction. These findings confirm the robustness of the RMS-HSDec algorithm under different channel conditions. Overall, the proposed decoder proves to be an effective solution, optimizing memory usage without compromising error correction capabilities, making it ideal for high-density data applications and environments with limited memory resources.</div></div>\",\"PeriodicalId\":21690,\"journal\":{\"name\":\"Scientific African\",\"volume\":\"26 \",\"pages\":\"Article e02383\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific African\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468227624003259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227624003259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种基于哈希和症候解码(HSDec)解码器的优化版本,命名为减少内存空间的 HSDec(RMS-HSDec),它使用更少的内存空间。本文旨在降低 HSDec 解码算法的空间复杂性,同时保留其纠错能力。我们的方法包括只为可纠错模式分配必要的内存空间,并优化哈希机制以有效处理潜在的碰撞。与 HSDec 相比,这种新方法在保持纠错完整性的同时,保证 BCH(63, 39, 9) 码的内存减少率超过 96%,QR(47, 24, 11) 码的内存减少率超过 84%。 仿真评估了 RMS-HSDec 在 AWGN 和瑞利信道上对各种 BCH 码和 QR 码的性能。结果表明,在 AWGN 信道上,内存减少率和编码增益明显,从 0.8 dB 到 2.8 dB 不等,在瑞利信道上从 14 dB 到 32 dB 不等,证实了该算法在不同信道条件下的鲁棒性。对比分析表明,RMS-HSDec 在提供有效纠错的同时,其性能与现有解码器相比仍具有竞争力。这些发现证实了 RMS-HSDec 算法在不同信道条件下的鲁棒性。总体而言,所提出的解码器被证明是一种有效的解决方案,在优化内存使用的同时不影响纠错能力,因此非常适合高密度数据应用和内存资源有限的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Spatial Complexity of the Hard Decision Decoder Based on Hash and Syndrome Decoding (HSDec)
In this article, we propose an optimized version of the Hard Decision Decoder based on Hash and Syndrome Decoding (HSDec) decoder, named Reduced Memory Space of HSDec (RMS-HSDec), which uses less memory space. In this article, we aim to reduce the spatial complexity of the HSDec decoding algorithm while preserving its error correction capabilities. Our methodology involves allocating only the essential memory space for correctable error patterns and optimizing the hashing mechanism to effectively handle potential collisions. While maintaining the integrity of error correction, this new method guarantees memory reduction rates of over 96 % for the BCH(63, 39, 9) code and over 84 % for the QR(47, 24, 11) code compared to HSDec. Simulations were conducted to evaluate the performance of RMS-HSDec on various BCH and QR codes over AWGN and Rayleigh channels. The results demonstrated significant memory reduction rates and coding gains ranging from 0.8 dB to 2.8 dB over the AWGN channel and from 14 dB to 32 dB over the Rayleigh channel, confirming the robustness of the algorithm under different channel conditions. Comparative analyses showed that RMS-HSDec maintains competitive performance with existing decoders while offering effective error correction. These findings confirm the robustness of the RMS-HSDec algorithm under different channel conditions. Overall, the proposed decoder proves to be an effective solution, optimizing memory usage without compromising error correction capabilities, making it ideal for high-density data applications and environments with limited memory resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
期刊最新文献
Assessment of soil quality degradation impacted by topsoil stockpiling of a surface mining operation in a Tropical climate. An approximate solution of multi-term fractional telegraph equation with quadratic B-spline basis functions Wind energy potential assessment using the Weibull distribution method for future energy self-sufficiency Fluoride contamination a silent global water crisis: A Case of Africa Modified Fractional Power Series Method for solving fractional partial differential equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1