用于检测荷斯坦奶牛发情和妊娠的红外测温仪

IF 2.9 2区 生物学 Q2 BIOLOGY Journal of thermal biology Pub Date : 2024-09-12 DOI:10.1016/j.jtherbio.2024.103972
{"title":"用于检测荷斯坦奶牛发情和妊娠的红外测温仪","authors":"","doi":"10.1016/j.jtherbio.2024.103972","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient reproductive management is paramount in enhancing the productivity and welfare of dairy cows. This study investigates the effects of pregnancy status, seasonal variations, and diurnal shifts on the body temperature of different body parts in dairy cows. Using a structured approach, cows were categorized based on pregnancy status (pregnant vs. control) or estrous status (estrous vs. control), season (winter, spring, summer), and time of day (morning, noon, evening). The analysis revealed that pregnancy and estrous statuses significantly affect the body temperature, with pregnant and estrous cows displaying higher temperatures (39.0 ± 0.03 and 38.0 ± 0.06 °C, respectively) than controls (37.1 ± 0.06 °C; p &lt; 0.01). Seasonal impacts were also notable, with the highest temperatures observed in summer (38.3 ± 0.07 °C) followed by spring (38.1 ± 0.09 °C) and winter (37.7 ± 0.06 °C; p &lt; 0.01), indicating a strong environmental influence on physiological responses. Furthermore, diurnal analysis indicated temperature fluctuations throughout the day, peaking at noon (38.1 ± 0.09 °C; p &lt; 0.05) compared to morning and evening. High positive correlations were observed between the measured temperatures in different areas and rectal and vaginal temperatures, suggesting the skin surface is ideal for assessing thermal changes. These findings underscore the critical interplay between an animal's physiological state and external environmental factors in managing dairy cow health and reproduction. The study highlights the potential of non-invasive temperature monitoring as a tool for optimizing reproductive management and underscores the necessity of accounting for environmental and physiological variations in dairy management practices.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared thermometry for detecting estrus and pregnancy in Holstein cows\",\"authors\":\"\",\"doi\":\"10.1016/j.jtherbio.2024.103972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient reproductive management is paramount in enhancing the productivity and welfare of dairy cows. This study investigates the effects of pregnancy status, seasonal variations, and diurnal shifts on the body temperature of different body parts in dairy cows. Using a structured approach, cows were categorized based on pregnancy status (pregnant vs. control) or estrous status (estrous vs. control), season (winter, spring, summer), and time of day (morning, noon, evening). The analysis revealed that pregnancy and estrous statuses significantly affect the body temperature, with pregnant and estrous cows displaying higher temperatures (39.0 ± 0.03 and 38.0 ± 0.06 °C, respectively) than controls (37.1 ± 0.06 °C; p &lt; 0.01). Seasonal impacts were also notable, with the highest temperatures observed in summer (38.3 ± 0.07 °C) followed by spring (38.1 ± 0.09 °C) and winter (37.7 ± 0.06 °C; p &lt; 0.01), indicating a strong environmental influence on physiological responses. Furthermore, diurnal analysis indicated temperature fluctuations throughout the day, peaking at noon (38.1 ± 0.09 °C; p &lt; 0.05) compared to morning and evening. High positive correlations were observed between the measured temperatures in different areas and rectal and vaginal temperatures, suggesting the skin surface is ideal for assessing thermal changes. These findings underscore the critical interplay between an animal's physiological state and external environmental factors in managing dairy cow health and reproduction. The study highlights the potential of non-invasive temperature monitoring as a tool for optimizing reproductive management and underscores the necessity of accounting for environmental and physiological variations in dairy management practices.</div></div>\",\"PeriodicalId\":17428,\"journal\":{\"name\":\"Journal of thermal biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of thermal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001906\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524001906","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高效的繁殖管理对提高奶牛的生产力和福利至关重要。本研究调查了妊娠状态、季节变化和昼夜变化对奶牛不同身体部位体温的影响。采用结构化方法,根据妊娠状态(妊娠与对照)或发情状态(发情与对照)、季节(冬季、春季、夏季)和时间(早晨、中午、傍晚)对奶牛进行分类。分析表明,妊娠和发情状态对体温有显著影响,妊娠牛和发情牛的体温(分别为 39.0 ± 0.03 和 38.0 ± 0.06 °C)高于对照组(37.1 ± 0.06 °C;p <0.01)。季节影响也很明显,夏季温度最高(38.3 ± 0.07 °C),其次是春季(38.1 ± 0.09 °C)和冬季(37.7 ± 0.06 °C;p < 0.01),这表明环境对生理反应有很大影响。此外,昼夜分析表明,全天温度波动较大,中午(38.1 ± 0.09 °C; p <0.05)与早晚相比达到峰值。不同部位的测量温度与直肠和阴道温度之间存在高度正相关,表明皮肤表面是评估热变化的理想部位。这些发现强调了在管理奶牛健康和繁殖过程中,动物生理状态与外部环境因素之间的重要相互作用。该研究强调了无创体温监测作为优化繁殖管理工具的潜力,并强调了在奶牛管理实践中考虑环境和生理变化的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infrared thermometry for detecting estrus and pregnancy in Holstein cows
Efficient reproductive management is paramount in enhancing the productivity and welfare of dairy cows. This study investigates the effects of pregnancy status, seasonal variations, and diurnal shifts on the body temperature of different body parts in dairy cows. Using a structured approach, cows were categorized based on pregnancy status (pregnant vs. control) or estrous status (estrous vs. control), season (winter, spring, summer), and time of day (morning, noon, evening). The analysis revealed that pregnancy and estrous statuses significantly affect the body temperature, with pregnant and estrous cows displaying higher temperatures (39.0 ± 0.03 and 38.0 ± 0.06 °C, respectively) than controls (37.1 ± 0.06 °C; p < 0.01). Seasonal impacts were also notable, with the highest temperatures observed in summer (38.3 ± 0.07 °C) followed by spring (38.1 ± 0.09 °C) and winter (37.7 ± 0.06 °C; p < 0.01), indicating a strong environmental influence on physiological responses. Furthermore, diurnal analysis indicated temperature fluctuations throughout the day, peaking at noon (38.1 ± 0.09 °C; p < 0.05) compared to morning and evening. High positive correlations were observed between the measured temperatures in different areas and rectal and vaginal temperatures, suggesting the skin surface is ideal for assessing thermal changes. These findings underscore the critical interplay between an animal's physiological state and external environmental factors in managing dairy cow health and reproduction. The study highlights the potential of non-invasive temperature monitoring as a tool for optimizing reproductive management and underscores the necessity of accounting for environmental and physiological variations in dairy management practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of thermal biology
Journal of thermal biology 生物-动物学
CiteScore
5.30
自引率
7.40%
发文量
196
审稿时长
14.5 weeks
期刊介绍: The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are: • The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature • The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature • Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause • Effects of temperature on reproduction and development, growth, ageing and life-span • Studies on modelling heat transfer between organisms and their environment • The contributions of temperature to effects of climate change on animal species and man • Studies of conservation biology and physiology related to temperature • Behavioural and physiological regulation of body temperature including its pathophysiology and fever • Medical applications of hypo- and hyperthermia Article types: • Original articles • Review articles
期刊最新文献
Upper thermal limits are ‘hard-wired’ across body mass but not populations of an estuarine fish Embryonic thermal manipulation and post-hatch dietary guanidinoacetic acid supplementation alleviated chronic heat stress impact on broiler chickens Environmental high temperature affects pre-implantation embryo development by impairing the DNA repair ability Regular cold shower exposure modulates humoral and cell-mediated immunity in healthy individuals Thermal stress during incubation in an arctic breeding seabird
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1