用于对称和可逆固体氧化物燃料电池的垂直异质结构

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-09-24 DOI:10.1016/j.nanoen.2024.110293
{"title":"用于对称和可逆固体氧化物燃料电池的垂直异质结构","authors":"","doi":"10.1016/j.nanoen.2024.110293","DOIUrl":null,"url":null,"abstract":"<div><div>Interfacial modification using functional metal oxides holds great potential for enhancing the electrochemical performance of solid oxide fuel cells (SOFCs). This study presents a redox-stable vertically aligned nanostructure (VAN) thin film based on a heteroepitaxial perovskite-fluorite nanocomposite prepared by pulsed laser deposition on different substrates. The self-assembled functional layers consist of alternating columns of two well-differentiated phases, (La<sub>0.8</sub>Sr<sub>0.2</sub>)<sub>0.95</sub>Fe<sub>0.8</sub>Ti<sub>0.2</sub>O<sub>3−δ</sub>-Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>1.95</sub> (LSFT-CGO) VAN, with multiple strained vertical interfaces. The coexistence of two immiscible phases at the nanoscale significantly extends the triple phase boundary (TPB) and reaction sites, resulting in fast electrochemical redox reactions. The LSFT-CGO VAN active layer demonstrates improved performance under both air and H<sub>2</sub> conditions, with polarization resistances of 2.9 and 75.9 Ω cm<sup>2</sup> at 650 °C, respectively. The nanoengineering design of functional metal oxides featuring hierarchical columnar architecture represents a significant step towards developing efficient energy conversion devices, particularly symmetrical and reversible SOFCs.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical heterostructures for symmetrical and reversible solid oxide fuel cells\",\"authors\":\"\",\"doi\":\"10.1016/j.nanoen.2024.110293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interfacial modification using functional metal oxides holds great potential for enhancing the electrochemical performance of solid oxide fuel cells (SOFCs). This study presents a redox-stable vertically aligned nanostructure (VAN) thin film based on a heteroepitaxial perovskite-fluorite nanocomposite prepared by pulsed laser deposition on different substrates. The self-assembled functional layers consist of alternating columns of two well-differentiated phases, (La<sub>0.8</sub>Sr<sub>0.2</sub>)<sub>0.95</sub>Fe<sub>0.8</sub>Ti<sub>0.2</sub>O<sub>3−δ</sub>-Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>1.95</sub> (LSFT-CGO) VAN, with multiple strained vertical interfaces. The coexistence of two immiscible phases at the nanoscale significantly extends the triple phase boundary (TPB) and reaction sites, resulting in fast electrochemical redox reactions. The LSFT-CGO VAN active layer demonstrates improved performance under both air and H<sub>2</sub> conditions, with polarization resistances of 2.9 and 75.9 Ω cm<sup>2</sup> at 650 °C, respectively. The nanoengineering design of functional metal oxides featuring hierarchical columnar architecture represents a significant step towards developing efficient energy conversion devices, particularly symmetrical and reversible SOFCs.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524010450\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524010450","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用功能性金属氧化物进行界面改性在提高固体氧化物燃料电池(SOFC)的电化学性能方面具有巨大潜力。本研究介绍了一种氧化还原稳定的垂直排列纳米结构(VAN)薄膜,该薄膜基于在不同基底上通过脉冲激光沉积法制备的异质外延透辉石-萤石纳米复合材料。自组装功能层由两列分化良好的相交替组成,即(La0.8Sr0.2)0.95Fe0.8Ti0.2O3-δ-Ce0.9Gd0.1O1.95(LSFT-CGO)VAN,具有多个应变垂直界面。两种不相溶相在纳米尺度上的共存极大地扩展了三相边界(TPB)和反应位点,从而导致快速的电化学氧化还原反应。LSFT-CGO VAN 活性层在空气和 H2 条件下均表现出更高的性能,650 °C 时的极化电阻分别为 2.9 和 75.9 Ω cm2。具有分层柱状结构的功能金属氧化物的纳米工程设计是开发高效能源转换设备,特别是对称和可逆 SOFC 的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vertical heterostructures for symmetrical and reversible solid oxide fuel cells
Interfacial modification using functional metal oxides holds great potential for enhancing the electrochemical performance of solid oxide fuel cells (SOFCs). This study presents a redox-stable vertically aligned nanostructure (VAN) thin film based on a heteroepitaxial perovskite-fluorite nanocomposite prepared by pulsed laser deposition on different substrates. The self-assembled functional layers consist of alternating columns of two well-differentiated phases, (La0.8Sr0.2)0.95Fe0.8Ti0.2O3−δ-Ce0.9Gd0.1O1.95 (LSFT-CGO) VAN, with multiple strained vertical interfaces. The coexistence of two immiscible phases at the nanoscale significantly extends the triple phase boundary (TPB) and reaction sites, resulting in fast electrochemical redox reactions. The LSFT-CGO VAN active layer demonstrates improved performance under both air and H2 conditions, with polarization resistances of 2.9 and 75.9 Ω cm2 at 650 °C, respectively. The nanoengineering design of functional metal oxides featuring hierarchical columnar architecture represents a significant step towards developing efficient energy conversion devices, particularly symmetrical and reversible SOFCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
AI-enhanced backpack with double frequency-up conversion vibration energy converter for motion recognition and extended battery life A compressible high-sensitivity flexible sensor array for real-time motion artifact detection in magnetic resonance imaging Vertical heterostructures for symmetrical and reversible solid oxide fuel cells Wearable fiber-based visual strain sensors with high sensitivity and excellent cyclic stability for health monitoring and thermal management Progress in passivating selective contacts for heterojunction silicon solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1