{"title":"自动学习语言结构以提取实体关系","authors":"Weizhe Yang , Yanping Chen , Jinling Xu , Yongbin Qin , Ping Chen","doi":"10.1016/j.ipm.2024.103904","DOIUrl":null,"url":null,"abstract":"<div><div>A sentence is composed of linguistically linked units, such as words or phrases. The dependencies between them compose the linguistic structures of a sentence, which indicates the meanings of linguistic units and encodes the syntactic or semantic relationships between them. Therefore, it is important to learn the linguistic structures of a sentence for entity relation extraction or other natural language processing (NLP) tasks. In related works, manual rules or dependency trees are usually adopted to capture the linguistic structures. These methods heavily depend on prior knowledge or external toolkits. In this paper, we introduce a Supervised Graph Autoencoder Network (SGAN) model to automatically learn the linguistic structures of a sentence. Unlike traditional graph neural networks that use a fixed adjacency matrix initialized with prior knowledge, the SGAN model contains a learnable adjacency matrix that is dynamically tuned by a task-relevant learning objective. It can automatically learn linguistic structures from raw input sentences. After being evaluated on seven public datasets, the SGAN achieves state-of-the-art (SOTA) performance, outperforming all compared models. The results show that automatically learned linguistic structures have better performance than manually designed linguistic patterns. It exhibits great potential for supporting entity relation extraction and other NLP tasks.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 1","pages":"Article 103904"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatically learning linguistic structures for entity relation extraction\",\"authors\":\"Weizhe Yang , Yanping Chen , Jinling Xu , Yongbin Qin , Ping Chen\",\"doi\":\"10.1016/j.ipm.2024.103904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A sentence is composed of linguistically linked units, such as words or phrases. The dependencies between them compose the linguistic structures of a sentence, which indicates the meanings of linguistic units and encodes the syntactic or semantic relationships between them. Therefore, it is important to learn the linguistic structures of a sentence for entity relation extraction or other natural language processing (NLP) tasks. In related works, manual rules or dependency trees are usually adopted to capture the linguistic structures. These methods heavily depend on prior knowledge or external toolkits. In this paper, we introduce a Supervised Graph Autoencoder Network (SGAN) model to automatically learn the linguistic structures of a sentence. Unlike traditional graph neural networks that use a fixed adjacency matrix initialized with prior knowledge, the SGAN model contains a learnable adjacency matrix that is dynamically tuned by a task-relevant learning objective. It can automatically learn linguistic structures from raw input sentences. After being evaluated on seven public datasets, the SGAN achieves state-of-the-art (SOTA) performance, outperforming all compared models. The results show that automatically learned linguistic structures have better performance than manually designed linguistic patterns. It exhibits great potential for supporting entity relation extraction and other NLP tasks.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"62 1\",\"pages\":\"Article 103904\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324002632\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002632","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Automatically learning linguistic structures for entity relation extraction
A sentence is composed of linguistically linked units, such as words or phrases. The dependencies between them compose the linguistic structures of a sentence, which indicates the meanings of linguistic units and encodes the syntactic or semantic relationships between them. Therefore, it is important to learn the linguistic structures of a sentence for entity relation extraction or other natural language processing (NLP) tasks. In related works, manual rules or dependency trees are usually adopted to capture the linguistic structures. These methods heavily depend on prior knowledge or external toolkits. In this paper, we introduce a Supervised Graph Autoencoder Network (SGAN) model to automatically learn the linguistic structures of a sentence. Unlike traditional graph neural networks that use a fixed adjacency matrix initialized with prior knowledge, the SGAN model contains a learnable adjacency matrix that is dynamically tuned by a task-relevant learning objective. It can automatically learn linguistic structures from raw input sentences. After being evaluated on seven public datasets, the SGAN achieves state-of-the-art (SOTA) performance, outperforming all compared models. The results show that automatically learned linguistic structures have better performance than manually designed linguistic patterns. It exhibits great potential for supporting entity relation extraction and other NLP tasks.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.