Domain disentanglement and fusion based on hyperbolic neural networks for zero-shot sketch-based image retrieval

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Processing & Management Pub Date : 2024-11-15 DOI:10.1016/j.ipm.2024.103963
Qing Zhang , Jing Zhang , Xiangdong Su , Yonghe Wang , Feilong Bao , Guanglai Gao
{"title":"Domain disentanglement and fusion based on hyperbolic neural networks for zero-shot sketch-based image retrieval","authors":"Qing Zhang ,&nbsp;Jing Zhang ,&nbsp;Xiangdong Su ,&nbsp;Yonghe Wang ,&nbsp;Feilong Bao ,&nbsp;Guanglai Gao","doi":"10.1016/j.ipm.2024.103963","DOIUrl":null,"url":null,"abstract":"<div><div>With the advancement of zero-shot sketch-based image retrieval (ZS-SBIR) tasks, existing methods still encounter two major challenges: Euclidean space fails to effectively represent data with hierarchical structures, leading to non-discriminative retrieval features; relying solely on visual information is insufficient to align cross-domain features and maximize their domain generalization capabilities. To tackle these issues, this paper designs a hyperbolic neural networks based ZS-SBIR framework that considers domain disentanglement and fusion learning, called “DDFUS”. Specifically, we present a contrastive cross-modal learning method that guides the alignment of multi-domain visual representations with semantic representations in the hyperbolic space. This approach ensures that each visual representation possesses rich semantic hierarchical structure information. Furthermore, we propose a domain disentanglement method based on hyperbolic neural networks that employs paired hyperbolic encoders to decompose the representation of each domain into domain-invariant and domain-specific features to reduce information disturbance between domains. Moreover, we design an advanced cross-domain fusion method that promotes the fusion and exchange of multi-domain information through the reconstruction and generation of cross-domain samples. It significantly enhances the representation and generalization capabilities of domain-invariant features. Comprehensive experiments demonstrate that the mAP@all of our DDFUS model surpasses CNN-based models by 18.99 % on the Sketchy dataset, 1.93 % on the more difficult TU-Berlin dataset, and 11.4 % on the more challenging QuickDraw dataset.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 1","pages":"Article 103963"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003224","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of zero-shot sketch-based image retrieval (ZS-SBIR) tasks, existing methods still encounter two major challenges: Euclidean space fails to effectively represent data with hierarchical structures, leading to non-discriminative retrieval features; relying solely on visual information is insufficient to align cross-domain features and maximize their domain generalization capabilities. To tackle these issues, this paper designs a hyperbolic neural networks based ZS-SBIR framework that considers domain disentanglement and fusion learning, called “DDFUS”. Specifically, we present a contrastive cross-modal learning method that guides the alignment of multi-domain visual representations with semantic representations in the hyperbolic space. This approach ensures that each visual representation possesses rich semantic hierarchical structure information. Furthermore, we propose a domain disentanglement method based on hyperbolic neural networks that employs paired hyperbolic encoders to decompose the representation of each domain into domain-invariant and domain-specific features to reduce information disturbance between domains. Moreover, we design an advanced cross-domain fusion method that promotes the fusion and exchange of multi-domain information through the reconstruction and generation of cross-domain samples. It significantly enhances the representation and generalization capabilities of domain-invariant features. Comprehensive experiments demonstrate that the mAP@all of our DDFUS model surpasses CNN-based models by 18.99 % on the Sketchy dataset, 1.93 % on the more difficult TU-Berlin dataset, and 11.4 % on the more challenging QuickDraw dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双曲神经网络的基于零镜头草图的图像检索的域分解和融合
随着基于零镜头草图的图像检索(ZS-SBIR)任务的发展,现有方法仍面临两大挑战:欧几里得空间无法有效表示具有层次结构的数据,导致检索特征缺乏区分度;仅仅依靠视觉信息不足以调整跨领域特征并最大限度地提高其领域泛化能力。为了解决这些问题,本文设计了一种基于双曲神经网络的 ZS-SBIR 框架,该框架考虑了领域分离和融合学习,称为 "DDFUS"。具体来说,我们提出了一种对比性跨模态学习方法,可引导多域视觉表征与双曲空间中的语义表征进行对齐。这种方法确保每个视觉表征都拥有丰富的语义层次结构信息。此外,我们还提出了一种基于双曲神经网络的域解缠方法,该方法采用成对双曲编码器将每个域的表征分解为域不变特征和域特定特征,以减少域之间的信息干扰。此外,我们还设计了一种先进的跨域融合方法,通过重建和生成跨域样本来促进多域信息的融合与交换。它大大增强了域不变特征的表示和泛化能力。综合实验证明,我们的 DDFUS 模型的 mAP@all 在 Sketchy 数据集上超过基于 CNN 的模型 18.99%,在难度更大的 TU-Berlin 数据集上超过 1.93%,在难度更高的 QuickDraw 数据集上超过 11.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
期刊最新文献
Unsupervised Adaptive Hypergraph Correlation Hashing for multimedia retrieval Enhancing robustness in implicit feedback recommender systems with subgraph contrastive learning Domain disentanglement and fusion based on hyperbolic neural networks for zero-shot sketch-based image retrieval Patients' cognitive and behavioral paradoxes in the process of adopting conflicting health information: A dynamic perspective Study of technology communities and dominant technology lock-in in the Internet of Things domain - Based on social network analysis of patent network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1