{"title":"通过硬阈值算法使用扩展器进行稀疏恢复","authors":"Kun-Kai Wen, Jia-Xin He, Peng Li","doi":"10.1016/j.sigpro.2024.109715","DOIUrl":null,"url":null,"abstract":"<div><div>Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard thresholding algorithm (ENHB-HT) based on expander iterative hard thresholding (E-IHT) algorithm. We provide convergence analysis of ENHB-HT, and it turns out that ENHB-HT can recover an <span><math><mi>s</mi></math></span>-sparse signal if the measurement matrix <span><math><mrow><mi>A</mi><mo>∈</mo><msup><mrow><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow><mrow><mi>m</mi><mo>×</mo><mi>n</mi></mrow></msup></mrow></math></span> satisfies some mild conditions. Numerical experiments are simulated to support our two main theorems which describe the convergence rate and the accuracy of the proposed algorithm. Simulations are also performed to compare the performance of ENHB-HT and several existing algorithms under different types of noise, the empirical results demonstrate that our algorithm outperform a few existing ones in the presence of outliers.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109715"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse recovery using expanders via hard thresholding algorithm\",\"authors\":\"Kun-Kai Wen, Jia-Xin He, Peng Li\",\"doi\":\"10.1016/j.sigpro.2024.109715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard thresholding algorithm (ENHB-HT) based on expander iterative hard thresholding (E-IHT) algorithm. We provide convergence analysis of ENHB-HT, and it turns out that ENHB-HT can recover an <span><math><mi>s</mi></math></span>-sparse signal if the measurement matrix <span><math><mrow><mi>A</mi><mo>∈</mo><msup><mrow><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow><mrow><mi>m</mi><mo>×</mo><mi>n</mi></mrow></msup></mrow></math></span> satisfies some mild conditions. Numerical experiments are simulated to support our two main theorems which describe the convergence rate and the accuracy of the proposed algorithm. Simulations are also performed to compare the performance of ENHB-HT and several existing algorithms under different types of noise, the empirical results demonstrate that our algorithm outperform a few existing ones in the presence of outliers.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109715\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003359\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003359","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
扩展器在组合压缩传感中发挥着重要作用。通过扩展器测量,我们在扩展器迭代硬阈值算法(E-IHT)的基础上提出了扩展器归一化重球硬阈值算法(ENHB-HT)。我们提供了 ENHB-HT 的收敛性分析,结果表明,如果测量矩阵 A∈{0,1}m×n 满足一些温和条件,ENHB-HT 可以恢复 s 稀疏信号。我们模拟了数值实验来支持我们的两个主要定理,这两个定理描述了所提算法的收敛速度和准确性。模拟实验还比较了 ENHB-HT 和几种现有算法在不同类型噪声下的性能,实证结果表明,在存在异常值的情况下,我们的算法优于几种现有算法。
Sparse recovery using expanders via hard thresholding algorithm
Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard thresholding algorithm (ENHB-HT) based on expander iterative hard thresholding (E-IHT) algorithm. We provide convergence analysis of ENHB-HT, and it turns out that ENHB-HT can recover an -sparse signal if the measurement matrix satisfies some mild conditions. Numerical experiments are simulated to support our two main theorems which describe the convergence rate and the accuracy of the proposed algorithm. Simulations are also performed to compare the performance of ENHB-HT and several existing algorithms under different types of noise, the empirical results demonstrate that our algorithm outperform a few existing ones in the presence of outliers.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.