Niloufar Salehi , Saman Amir , Malvina Roci , Sayyed Shoaib-ul-Hasan , Farazee M.A. Asif , Aleš Mihelič , Susanne Sweet , Amir Rashid
{"title":"实施循环型制造系统:循环供应链综合分析框架","authors":"Niloufar Salehi , Saman Amir , Malvina Roci , Sayyed Shoaib-ul-Hasan , Farazee M.A. Asif , Aleš Mihelič , Susanne Sweet , Amir Rashid","doi":"10.1016/j.spc.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>The transition to circular manufacturing systems (CMS) is crucial for achieving sustainable growth, addressing the environmental concerns and resource scarcity challenges. Shifting towards CMS requires a systemic approach that integrates value proposition models, product design, and supply chains (SCs). Circular supply chains (CSCs) emerge as a core pillar of CMS, incorporating value delivery, use, recovery, and reuse. CSCs are inherently more complex and dynamic than linear SCs requiring a holistic analysis approach to capture their complex and dynamic attributes. This research proposes an integrated analysis framework combining qualitative and quantitative approaches to explore the complexities and dynamics of CSCs and assess their economic, environmental, and technical performance. Through the lens of two different CMS implementation case studies, one in automotive parts remanufacturing and one in white goods manufacturing, this research illustrates the framework's applicability. In the automotive case, centralizing core management activities was found to improve economic performance by 50-54 %. However, the introduction of regional logistics hubs, while economically efficient, led to a 20 % increase in CO<sub>2</sub>-equivalent emissions. On the other hand, the white goods case study highlighted the trade-offs in centralizing end-of-life recovery facilities, where financial savings of up to 60 % were offset by increased transportation costs and increased CO<sub>2</sub> emissions. The analysis of CSCs in these two distinct manufacturing sectors underscores the relevance and flexibility of the proposed framework, providing decision-makers with a tool to examine how different CSCs configurations and strategies impact overall performance. This guidance is crucial for developing optimal CSCs design and implementation strategies.</div></div>","PeriodicalId":48619,"journal":{"name":"Sustainable Production and Consumption","volume":"51 ","pages":"Pages 169-198"},"PeriodicalIF":10.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards circular manufacturing systems implementation: An integrated analysis framework for circular supply chains\",\"authors\":\"Niloufar Salehi , Saman Amir , Malvina Roci , Sayyed Shoaib-ul-Hasan , Farazee M.A. Asif , Aleš Mihelič , Susanne Sweet , Amir Rashid\",\"doi\":\"10.1016/j.spc.2024.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The transition to circular manufacturing systems (CMS) is crucial for achieving sustainable growth, addressing the environmental concerns and resource scarcity challenges. Shifting towards CMS requires a systemic approach that integrates value proposition models, product design, and supply chains (SCs). Circular supply chains (CSCs) emerge as a core pillar of CMS, incorporating value delivery, use, recovery, and reuse. CSCs are inherently more complex and dynamic than linear SCs requiring a holistic analysis approach to capture their complex and dynamic attributes. This research proposes an integrated analysis framework combining qualitative and quantitative approaches to explore the complexities and dynamics of CSCs and assess their economic, environmental, and technical performance. Through the lens of two different CMS implementation case studies, one in automotive parts remanufacturing and one in white goods manufacturing, this research illustrates the framework's applicability. In the automotive case, centralizing core management activities was found to improve economic performance by 50-54 %. However, the introduction of regional logistics hubs, while economically efficient, led to a 20 % increase in CO<sub>2</sub>-equivalent emissions. On the other hand, the white goods case study highlighted the trade-offs in centralizing end-of-life recovery facilities, where financial savings of up to 60 % were offset by increased transportation costs and increased CO<sub>2</sub> emissions. The analysis of CSCs in these two distinct manufacturing sectors underscores the relevance and flexibility of the proposed framework, providing decision-makers with a tool to examine how different CSCs configurations and strategies impact overall performance. This guidance is crucial for developing optimal CSCs design and implementation strategies.</div></div>\",\"PeriodicalId\":48619,\"journal\":{\"name\":\"Sustainable Production and Consumption\",\"volume\":\"51 \",\"pages\":\"Pages 169-198\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Production and Consumption\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352550924002653\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Production and Consumption","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352550924002653","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Towards circular manufacturing systems implementation: An integrated analysis framework for circular supply chains
The transition to circular manufacturing systems (CMS) is crucial for achieving sustainable growth, addressing the environmental concerns and resource scarcity challenges. Shifting towards CMS requires a systemic approach that integrates value proposition models, product design, and supply chains (SCs). Circular supply chains (CSCs) emerge as a core pillar of CMS, incorporating value delivery, use, recovery, and reuse. CSCs are inherently more complex and dynamic than linear SCs requiring a holistic analysis approach to capture their complex and dynamic attributes. This research proposes an integrated analysis framework combining qualitative and quantitative approaches to explore the complexities and dynamics of CSCs and assess their economic, environmental, and technical performance. Through the lens of two different CMS implementation case studies, one in automotive parts remanufacturing and one in white goods manufacturing, this research illustrates the framework's applicability. In the automotive case, centralizing core management activities was found to improve economic performance by 50-54 %. However, the introduction of regional logistics hubs, while economically efficient, led to a 20 % increase in CO2-equivalent emissions. On the other hand, the white goods case study highlighted the trade-offs in centralizing end-of-life recovery facilities, where financial savings of up to 60 % were offset by increased transportation costs and increased CO2 emissions. The analysis of CSCs in these two distinct manufacturing sectors underscores the relevance and flexibility of the proposed framework, providing decision-makers with a tool to examine how different CSCs configurations and strategies impact overall performance. This guidance is crucial for developing optimal CSCs design and implementation strategies.
期刊介绍:
Sustainable production and consumption refers to the production and utilization of goods and services in a way that benefits society, is economically viable, and has minimal environmental impact throughout its entire lifespan. Our journal is dedicated to publishing top-notch interdisciplinary research and practical studies in this emerging field. We take a distinctive approach by examining the interplay between technology, consumption patterns, and policy to identify sustainable solutions for both production and consumption systems.