{"title":"光催化去除氮氧化物:通过完全氧化和还原反应抑制副产品和回收最终产品","authors":"Wen Cui, Jiaqi Wang, Yan Li, Pingqu Liu, Fan Dong","doi":"10.1039/d4en00715h","DOIUrl":null,"url":null,"abstract":"Nitrogen oxides (NOx, x = 1,2, the proportion of NO was about 95%), as one of primary precursors for particulate matter and ozone, limits the continuous improvement of air quality. Photocatalytic NO purification technology has aroused wide attention and much efforts have been made to realize photocatalytic NO complete oxidation and reduction for toxic by-product inhibition and end-product recovery. This work presents a timely overview of current research progress on the conversion of NO into nitrate/ ammonia (NO3−/NH3) that could be further recycled and utilized. According to the essence of heterogeneous photocatalysis and considering the significance of reaction microenvironment (surface active sites of photocatalyst, target pollutant and reaction medium), this review systematically summarized the progress about control strategy on photocatalyst surface structure and reaction medium. Specifically, the critical overview focused on various surface modification methods of photocatalyst, coping strategy on accelerating mass transfer process of gaseous NO, and the effect of additional introduction of reductant/ antioxidant into reaction system. Furthermore, the research trends and future prospects are discussed, aiming to provide an insight into the breakthroughs and boost the development of photocatalytic NO removal technology.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"49 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic NO removal: complete oxidation and reduction reaction for by-product inhibition and end-product recovery\",\"authors\":\"Wen Cui, Jiaqi Wang, Yan Li, Pingqu Liu, Fan Dong\",\"doi\":\"10.1039/d4en00715h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrogen oxides (NOx, x = 1,2, the proportion of NO was about 95%), as one of primary precursors for particulate matter and ozone, limits the continuous improvement of air quality. Photocatalytic NO purification technology has aroused wide attention and much efforts have been made to realize photocatalytic NO complete oxidation and reduction for toxic by-product inhibition and end-product recovery. This work presents a timely overview of current research progress on the conversion of NO into nitrate/ ammonia (NO3−/NH3) that could be further recycled and utilized. According to the essence of heterogeneous photocatalysis and considering the significance of reaction microenvironment (surface active sites of photocatalyst, target pollutant and reaction medium), this review systematically summarized the progress about control strategy on photocatalyst surface structure and reaction medium. Specifically, the critical overview focused on various surface modification methods of photocatalyst, coping strategy on accelerating mass transfer process of gaseous NO, and the effect of additional introduction of reductant/ antioxidant into reaction system. Furthermore, the research trends and future prospects are discussed, aiming to provide an insight into the breakthroughs and boost the development of photocatalytic NO removal technology.\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d4en00715h\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00715h","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
氮氧化物(NOx,x = 1,2,NO 所占比例约为 95%)作为颗粒物和臭氧的主要前体物之一,制约着空气质量的持续改善。光催化氮氧化物净化技术已引起广泛关注,人们为实现光催化氮氧化物的完全氧化和还原以抑制有毒副产物和回收最终产品做出了大量努力。这项工作及时概述了目前将 NO 转化为可进一步回收利用的硝酸/氨(NO3-/NH3)的研究进展。根据异相光催化的本质,并考虑到反应微环境(光催化剂表面活性位点、目标污染物和反应介质)的重要性,本综述系统地总结了光催化剂表面结构和反应介质控制策略的研究进展。具体而言,综述重点讨论了光催化剂的各种表面改性方法、加速气态氮氧化物传质过程的应对策略以及在反应体系中额外引入还原剂/抗氧化剂的效果。此外,还讨论了研究趋势和未来展望,旨在为光催化去除 NO 技术的突破和发展提供启示。
Photocatalytic NO removal: complete oxidation and reduction reaction for by-product inhibition and end-product recovery
Nitrogen oxides (NOx, x = 1,2, the proportion of NO was about 95%), as one of primary precursors for particulate matter and ozone, limits the continuous improvement of air quality. Photocatalytic NO purification technology has aroused wide attention and much efforts have been made to realize photocatalytic NO complete oxidation and reduction for toxic by-product inhibition and end-product recovery. This work presents a timely overview of current research progress on the conversion of NO into nitrate/ ammonia (NO3−/NH3) that could be further recycled and utilized. According to the essence of heterogeneous photocatalysis and considering the significance of reaction microenvironment (surface active sites of photocatalyst, target pollutant and reaction medium), this review systematically summarized the progress about control strategy on photocatalyst surface structure and reaction medium. Specifically, the critical overview focused on various surface modification methods of photocatalyst, coping strategy on accelerating mass transfer process of gaseous NO, and the effect of additional introduction of reductant/ antioxidant into reaction system. Furthermore, the research trends and future prospects are discussed, aiming to provide an insight into the breakthroughs and boost the development of photocatalytic NO removal technology.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis