Xing Fan, Wei Zhang, Huchuan Yan, Cui Lai, Dengsheng Ma, Shiyu Liu, Mingming Zhang, Ling Li, Xuerong Zhou, Xiuqin Huo, Fuhang Xu, Xiaorui Hu, Biting Wang, Hao Sun and Wuqiang He
{"title":"金属/支架相互作用如何改善过一硫酸盐活化过程中的降解性能:高价钴氧物种的意义","authors":"Xing Fan, Wei Zhang, Huchuan Yan, Cui Lai, Dengsheng Ma, Shiyu Liu, Mingming Zhang, Ling Li, Xuerong Zhou, Xiuqin Huo, Fuhang Xu, Xiaorui Hu, Biting Wang, Hao Sun and Wuqiang He","doi":"10.1039/D4EN00355A","DOIUrl":null,"url":null,"abstract":"<p >Currently, the strategy of metal loading is expected to promote the nonradical catalytic activity of transition metal spinel oxide catalysts in peroxymonosulfate (PMS) systems, but the connection between the mechanism of degradation performance improvement and metal–support interaction (MSI) remains unclear. Herein, a novel CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> loaded sepiolite composite (10-CFS) was prepared for PMS activation to degrade ciprofloxacin (CIP). 10-CFS exhibited outstanding PMS activation ability, and 98.7% of CIP was degraded within 30 min, which was significantly higher than that of the physical mixture of sepiolite and CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> (59.8%). A series of experiments demonstrated that the presence of Co(<small>IV</small>)<img>O caused the better degradation performance of 10-CFS. Notably, theoretical calculations signified that MSI not only promoted the coupled electron–proton transfer (CEPT) process and thus changed the formation pathway of Co(<small>IV</small>)<img>O, but also facilitated PMS adsorption on 10-CFS and lowered the energy barrier for Co(<small>IV</small>)<img>O generation. In summary, this study illustrates deeply the mechanism of catalytic performance improvement after metal loading by focusing on the MSI and bridges the gap in understanding the MSI and degradation performance.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 12","pages":" 4754-4764"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How metal/support interaction improved degradation performance in the peroxymonosulfate activation process: significance of high-valent cobalt-oxo species†\",\"authors\":\"Xing Fan, Wei Zhang, Huchuan Yan, Cui Lai, Dengsheng Ma, Shiyu Liu, Mingming Zhang, Ling Li, Xuerong Zhou, Xiuqin Huo, Fuhang Xu, Xiaorui Hu, Biting Wang, Hao Sun and Wuqiang He\",\"doi\":\"10.1039/D4EN00355A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Currently, the strategy of metal loading is expected to promote the nonradical catalytic activity of transition metal spinel oxide catalysts in peroxymonosulfate (PMS) systems, but the connection between the mechanism of degradation performance improvement and metal–support interaction (MSI) remains unclear. Herein, a novel CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> loaded sepiolite composite (10-CFS) was prepared for PMS activation to degrade ciprofloxacin (CIP). 10-CFS exhibited outstanding PMS activation ability, and 98.7% of CIP was degraded within 30 min, which was significantly higher than that of the physical mixture of sepiolite and CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> (59.8%). A series of experiments demonstrated that the presence of Co(<small>IV</small>)<img>O caused the better degradation performance of 10-CFS. Notably, theoretical calculations signified that MSI not only promoted the coupled electron–proton transfer (CEPT) process and thus changed the formation pathway of Co(<small>IV</small>)<img>O, but also facilitated PMS adsorption on 10-CFS and lowered the energy barrier for Co(<small>IV</small>)<img>O generation. In summary, this study illustrates deeply the mechanism of catalytic performance improvement after metal loading by focusing on the MSI and bridges the gap in understanding the MSI and degradation performance.</p>\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\" 12\",\"pages\":\" 4754-4764\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00355a\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00355a","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
How metal/support interaction improved degradation performance in the peroxymonosulfate activation process: significance of high-valent cobalt-oxo species†
Currently, the strategy of metal loading is expected to promote the nonradical catalytic activity of transition metal spinel oxide catalysts in peroxymonosulfate (PMS) systems, but the connection between the mechanism of degradation performance improvement and metal–support interaction (MSI) remains unclear. Herein, a novel CoFe2O4 loaded sepiolite composite (10-CFS) was prepared for PMS activation to degrade ciprofloxacin (CIP). 10-CFS exhibited outstanding PMS activation ability, and 98.7% of CIP was degraded within 30 min, which was significantly higher than that of the physical mixture of sepiolite and CoFe2O4 (59.8%). A series of experiments demonstrated that the presence of Co(IV)O caused the better degradation performance of 10-CFS. Notably, theoretical calculations signified that MSI not only promoted the coupled electron–proton transfer (CEPT) process and thus changed the formation pathway of Co(IV)O, but also facilitated PMS adsorption on 10-CFS and lowered the energy barrier for Co(IV)O generation. In summary, this study illustrates deeply the mechanism of catalytic performance improvement after metal loading by focusing on the MSI and bridges the gap in understanding the MSI and degradation performance.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis