R. Caglayan, A. Mogulkoc, Y. Mogulkoc, M. Modarresi, A. N. Rudenko
{"title":"简纳斯半导体单层 VXY(X=Cl、Br、I;Y=S、Se、Te)中的 Dzyaloshinskii-Moriya 相互作用和非难自旋纹理","authors":"R. Caglayan, A. Mogulkoc, Y. Mogulkoc, M. Modarresi, A. N. Rudenko","doi":"10.1103/physrevb.110.094440","DOIUrl":null,"url":null,"abstract":"We present a density functional theory based study of a two-dimensional ferromagnetic Janus <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">V</mi><mi>X</mi><mi>Y</mi></mrow></math> <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mi>X</mi><mo>=</mo><mi>Cl</mi></mrow><mo>,</mo><mo> </mo><mi>Br</mi><mo>,</mo><mo> </mo><mi mathvariant=\"normal\">I</mi><mo>;</mo><mo> </mo><mrow><mi>Y</mi><mo>=</mo><mi mathvariant=\"normal\">S</mi><mo>,</mo><mo> </mo><mi>Se</mi><mo>,</mo><mo> </mo><mi>Te</mi><mo>)</mo></mrow></math> structure. The dynamical and thermal stabilities of all possible <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">V</mi><mi>X</mi><mi>Y</mi></mrow></math> structures consisting of chalcogen and halogen atoms in the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mi>T</mi></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn><mi>H</mi></mrow></math> phases are determined. Among them, only the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mi>T</mi></mrow></math> phases of the VBrS, VIS, and VISe structures are found to be stable. These structures show semiconducting properties and demonstrate spin-orbit-induced valley splittings, reaching 0.1 eV in the VISe monolayer. These structures exhibit in-plane easy axes with Curie temperatures around <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>∼</mo><mn>100</mn><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">K</mi></mrow></math> estimated based on the classical Monte Carlo and quantum Green's function techniques. On the other hand, the absence of inversion symmetry in Janus <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">V</mi><mi>X</mi><mi>Y</mi></mrow></math> compounds gives rise to the Dzyaloshinskii-Moriya interaction with the possibility of forming chiral magnetic structures. In the absence of an external magnetic field, Janus <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">V</mi><mi>X</mi><mi>Y</mi></mrow></math> monolayers exhibit magnetic chiral structures at 0 K, evidenced by nonzero <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math> (topological charge) values from Monte Carlo simulations. By applying an out-of-plane magnetic field of around 0.7 T, we observe the formation of skyrmions. At 5 K, the VIS monolayer demonstrates chiral magnetic structures, while VBrS and VISe display Néel-type domain walls. VISe forms a skyrmion lattice at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>∼</mo><mn>0.1</mn><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">T</mi></mrow></math> which does not persist beyond this value. Since all the structures have an in-plane easy axis, an in-plane magnetic field of around 0.5 T at 0 K gives rise to the formation of bimerons.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dzyaloshinskii-Moriya interaction and nontrivial spin textures in the Janus semiconductor monolayers VXY (X=Cl, Br, I; Y=S, Se, Te)\",\"authors\":\"R. Caglayan, A. Mogulkoc, Y. Mogulkoc, M. Modarresi, A. N. Rudenko\",\"doi\":\"10.1103/physrevb.110.094440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a density functional theory based study of a two-dimensional ferromagnetic Janus <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">V</mi><mi>X</mi><mi>Y</mi></mrow></math> <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>(</mo><mi>X</mi><mo>=</mo><mi>Cl</mi></mrow><mo>,</mo><mo> </mo><mi>Br</mi><mo>,</mo><mo> </mo><mi mathvariant=\\\"normal\\\">I</mi><mo>;</mo><mo> </mo><mrow><mi>Y</mi><mo>=</mo><mi mathvariant=\\\"normal\\\">S</mi><mo>,</mo><mo> </mo><mi>Se</mi><mo>,</mo><mo> </mo><mi>Te</mi><mo>)</mo></mrow></math> structure. The dynamical and thermal stabilities of all possible <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">V</mi><mi>X</mi><mi>Y</mi></mrow></math> structures consisting of chalcogen and halogen atoms in the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1</mn><mi>T</mi></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2</mn><mi>H</mi></mrow></math> phases are determined. Among them, only the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1</mn><mi>T</mi></mrow></math> phases of the VBrS, VIS, and VISe structures are found to be stable. These structures show semiconducting properties and demonstrate spin-orbit-induced valley splittings, reaching 0.1 eV in the VISe monolayer. These structures exhibit in-plane easy axes with Curie temperatures around <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>∼</mo><mn>100</mn><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">K</mi></mrow></math> estimated based on the classical Monte Carlo and quantum Green's function techniques. On the other hand, the absence of inversion symmetry in Janus <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">V</mi><mi>X</mi><mi>Y</mi></mrow></math> compounds gives rise to the Dzyaloshinskii-Moriya interaction with the possibility of forming chiral magnetic structures. In the absence of an external magnetic field, Janus <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">V</mi><mi>X</mi><mi>Y</mi></mrow></math> monolayers exhibit magnetic chiral structures at 0 K, evidenced by nonzero <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Q</mi></math> (topological charge) values from Monte Carlo simulations. By applying an out-of-plane magnetic field of around 0.7 T, we observe the formation of skyrmions. At 5 K, the VIS monolayer demonstrates chiral magnetic structures, while VBrS and VISe display Néel-type domain walls. VISe forms a skyrmion lattice at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>∼</mo><mn>0.1</mn><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">T</mi></mrow></math> which does not persist beyond this value. Since all the structures have an in-plane easy axis, an in-plane magnetic field of around 0.5 T at 0 K gives rise to the formation of bimerons.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.094440\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.094440","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
我们介绍了基于密度泛函理论的二维铁磁性 Janus VXY(X=Cl、Br、I;Y=S、Se、Te)结构研究。我们确定了所有可能的 VXY 结构的动力学和热稳定性,这些结构由 1T 和 2H 相中的查尔根原子和卤素原子组成。其中,只有 VBrS、VIS 和 VISe 结构的 1T 相是稳定的。这些结构具有半导体特性,并显示出自旋轨道诱导的谷分裂,在 VISe 单层中达到 0.1 eV。根据经典蒙特卡洛和量子格林函数技术的估算,这些结构显示出平面内易轴,居里温度约为∼100K。另一方面,由于 Janus VXY 化合物不存在反转对称性,因此产生了 Dzyaloshinskii-Moriya 相互作用,从而有可能形成手性磁结构。在没有外部磁场的情况下,Janus VXY 单层化合物在 0 K 时表现出磁手性结构,蒙特卡罗模拟的非零 Q 值(拓扑电荷)证明了这一点。通过施加大约 0.7 T 的平面外磁场,我们观察到了天幕的形成。在 5 K 时,VIS 单层显示了手性磁结构,而 VBrS 和 VISe 则显示了奈尔型畴壁。VISe 在 ∼0.1T 时形成了一个天芒晶格,超过该值后就不再持续。由于所有结构都有一个面内易轴,因此在 0 K 时,0.5 T 左右的面内磁场会导致双子的形成。
Dzyaloshinskii-Moriya interaction and nontrivial spin textures in the Janus semiconductor monolayers VXY (X=Cl, Br, I; Y=S, Se, Te)
We present a density functional theory based study of a two-dimensional ferromagnetic Janus structure. The dynamical and thermal stabilities of all possible structures consisting of chalcogen and halogen atoms in the and phases are determined. Among them, only the phases of the VBrS, VIS, and VISe structures are found to be stable. These structures show semiconducting properties and demonstrate spin-orbit-induced valley splittings, reaching 0.1 eV in the VISe monolayer. These structures exhibit in-plane easy axes with Curie temperatures around estimated based on the classical Monte Carlo and quantum Green's function techniques. On the other hand, the absence of inversion symmetry in Janus compounds gives rise to the Dzyaloshinskii-Moriya interaction with the possibility of forming chiral magnetic structures. In the absence of an external magnetic field, Janus monolayers exhibit magnetic chiral structures at 0 K, evidenced by nonzero (topological charge) values from Monte Carlo simulations. By applying an out-of-plane magnetic field of around 0.7 T, we observe the formation of skyrmions. At 5 K, the VIS monolayer demonstrates chiral magnetic structures, while VBrS and VISe display Néel-type domain walls. VISe forms a skyrmion lattice at which does not persist beyond this value. Since all the structures have an in-plane easy axis, an in-plane magnetic field of around 0.5 T at 0 K gives rise to the formation of bimerons.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter