Zuoxiang Liang, Dzianis Prakapenka, Hafedh B. Zaabza, Paul M. VanRaden, Curtis P. Van Tassell, Yang Da
{"title":"关于美国荷斯坦奶牛生产寿命的百万头奶牛全基因组关联研究","authors":"Zuoxiang Liang, Dzianis Prakapenka, Hafedh B. Zaabza, Paul M. VanRaden, Curtis P. Van Tassell, Yang Da","doi":"10.1186/s12711-024-00935-1","DOIUrl":null,"url":null,"abstract":"Productive life (PL) of a cow is the time the cow remains in the milking herd from first calving to exit from the herd due to culling or death and is an important economic trait in U.S. Holstein cattle. The large samples of Holstein genomic evaluation data that have become available recently provided unprecedented statistical power to identify genetic factors affecting PL in Holstein cows using the approach of genome-wide association study (GWAS). The GWAS analysis used 1,103,641 Holstein cows with phenotypic observations on PL and genotypes of 75,282 single nucleotide polymorphism (SNP) markers. The statistical tests and estimation of SNP additive and dominance effects used the approximate generalized least squares method implemented by the EPISNPmpi computer program. The GWAS detected 5390 significant additive effects of PL distributed over all 29 autosomes and the X–Y nonrecombining region of the X chromosome (Chr31). Two chromosome regions had the most significant and largest cluster of additive effects, the SLC4A4-GC-NPFFR2 (SGN) region of Chr06 with pleiotropic effects for PL, fertility, somatic cell score and milk yield; and the 32–52 Mb region of Chr10 with peak effects for PL in or near RASGRP1 with many important immunity functions. The dominance tests detected 38 significant dominance effects including 12 dominance effects with sharply negative homozygous recessive genotypes on Chr18, Chr05, Chr23 and Chr24. The GWAS results showed that highly significant genetic effects for PL were in chromosome regions known to have highly significant effects for fertility and health and a chromosome region with multiple genes with reproductive and immunity functions. SNPs with rare but sharply negative homozygous recessive genotypes for PL existed and should be used for eliminating heifers carrying those homozygous recessive genotypes.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"24 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A million-cow genome-wide association study of productive life in U.S. Holstein cows\",\"authors\":\"Zuoxiang Liang, Dzianis Prakapenka, Hafedh B. Zaabza, Paul M. VanRaden, Curtis P. Van Tassell, Yang Da\",\"doi\":\"10.1186/s12711-024-00935-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Productive life (PL) of a cow is the time the cow remains in the milking herd from first calving to exit from the herd due to culling or death and is an important economic trait in U.S. Holstein cattle. The large samples of Holstein genomic evaluation data that have become available recently provided unprecedented statistical power to identify genetic factors affecting PL in Holstein cows using the approach of genome-wide association study (GWAS). The GWAS analysis used 1,103,641 Holstein cows with phenotypic observations on PL and genotypes of 75,282 single nucleotide polymorphism (SNP) markers. The statistical tests and estimation of SNP additive and dominance effects used the approximate generalized least squares method implemented by the EPISNPmpi computer program. The GWAS detected 5390 significant additive effects of PL distributed over all 29 autosomes and the X–Y nonrecombining region of the X chromosome (Chr31). Two chromosome regions had the most significant and largest cluster of additive effects, the SLC4A4-GC-NPFFR2 (SGN) region of Chr06 with pleiotropic effects for PL, fertility, somatic cell score and milk yield; and the 32–52 Mb region of Chr10 with peak effects for PL in or near RASGRP1 with many important immunity functions. The dominance tests detected 38 significant dominance effects including 12 dominance effects with sharply negative homozygous recessive genotypes on Chr18, Chr05, Chr23 and Chr24. The GWAS results showed that highly significant genetic effects for PL were in chromosome regions known to have highly significant effects for fertility and health and a chromosome region with multiple genes with reproductive and immunity functions. SNPs with rare but sharply negative homozygous recessive genotypes for PL existed and should be used for eliminating heifers carrying those homozygous recessive genotypes.\",\"PeriodicalId\":55120,\"journal\":{\"name\":\"Genetics Selection Evolution\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics Selection Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12711-024-00935-1\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00935-1","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
A million-cow genome-wide association study of productive life in U.S. Holstein cows
Productive life (PL) of a cow is the time the cow remains in the milking herd from first calving to exit from the herd due to culling or death and is an important economic trait in U.S. Holstein cattle. The large samples of Holstein genomic evaluation data that have become available recently provided unprecedented statistical power to identify genetic factors affecting PL in Holstein cows using the approach of genome-wide association study (GWAS). The GWAS analysis used 1,103,641 Holstein cows with phenotypic observations on PL and genotypes of 75,282 single nucleotide polymorphism (SNP) markers. The statistical tests and estimation of SNP additive and dominance effects used the approximate generalized least squares method implemented by the EPISNPmpi computer program. The GWAS detected 5390 significant additive effects of PL distributed over all 29 autosomes and the X–Y nonrecombining region of the X chromosome (Chr31). Two chromosome regions had the most significant and largest cluster of additive effects, the SLC4A4-GC-NPFFR2 (SGN) region of Chr06 with pleiotropic effects for PL, fertility, somatic cell score and milk yield; and the 32–52 Mb region of Chr10 with peak effects for PL in or near RASGRP1 with many important immunity functions. The dominance tests detected 38 significant dominance effects including 12 dominance effects with sharply negative homozygous recessive genotypes on Chr18, Chr05, Chr23 and Chr24. The GWAS results showed that highly significant genetic effects for PL were in chromosome regions known to have highly significant effects for fertility and health and a chromosome region with multiple genes with reproductive and immunity functions. SNPs with rare but sharply negative homozygous recessive genotypes for PL existed and should be used for eliminating heifers carrying those homozygous recessive genotypes.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.