{"title":"中微子应用概念","authors":"Oluwatomi A. Akindele, Rachel Carr","doi":"10.1146/annurev-nucl-102122-023751","DOIUrl":null,"url":null,"abstract":"Will neutrinos find uses outside basic science? It may be too early to say, but neutrino physicists have already imagined a variety of possibilities from the relatively modest to the more blue-sky. In this review, we survey the range of proposed applications, most involving nuclear reactors and other fission sources. We give special attention to the most recent proposals, including verifying submarine reactor integrity, safeguarding advanced nuclear power plants, and monitoring spent nuclear fuel. All of these concepts take advantage of the fact that neutrinos pass through barriers other signals cannot penetrate. That same fact creates the central challenge for neutrino applications: the size and complexity of detectors needed to collect a signal. Although the weakly interacting nature of neutrinos makes them fundamentally difficult to use, developments in detector technology are making some ideas more feasible.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concepts for Neutrino Applications\",\"authors\":\"Oluwatomi A. Akindele, Rachel Carr\",\"doi\":\"10.1146/annurev-nucl-102122-023751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Will neutrinos find uses outside basic science? It may be too early to say, but neutrino physicists have already imagined a variety of possibilities from the relatively modest to the more blue-sky. In this review, we survey the range of proposed applications, most involving nuclear reactors and other fission sources. We give special attention to the most recent proposals, including verifying submarine reactor integrity, safeguarding advanced nuclear power plants, and monitoring spent nuclear fuel. All of these concepts take advantage of the fact that neutrinos pass through barriers other signals cannot penetrate. That same fact creates the central challenge for neutrino applications: the size and complexity of detectors needed to collect a signal. Although the weakly interacting nature of neutrinos makes them fundamentally difficult to use, developments in detector technology are making some ideas more feasible.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-nucl-102122-023751\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-102122-023751","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Will neutrinos find uses outside basic science? It may be too early to say, but neutrino physicists have already imagined a variety of possibilities from the relatively modest to the more blue-sky. In this review, we survey the range of proposed applications, most involving nuclear reactors and other fission sources. We give special attention to the most recent proposals, including verifying submarine reactor integrity, safeguarding advanced nuclear power plants, and monitoring spent nuclear fuel. All of these concepts take advantage of the fact that neutrinos pass through barriers other signals cannot penetrate. That same fact creates the central challenge for neutrino applications: the size and complexity of detectors needed to collect a signal. Although the weakly interacting nature of neutrinos makes them fundamentally difficult to use, developments in detector technology are making some ideas more feasible.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.