Marcin P Sajek, Danielle Y Bilodeau, Michael A Beer, Emma Horton, Yukiko Miyamoto, Katrina B Velle, Lars Eckmann, Lillian Fritz-Laylin, Olivia S Rissland, Neelanjan Mukherjee
{"title":"多腺苷酸化信号的进化动态及其在原生动物中的识别策略","authors":"Marcin P Sajek, Danielle Y Bilodeau, Michael A Beer, Emma Horton, Yukiko Miyamoto, Katrina B Velle, Lars Eckmann, Lillian Fritz-Laylin, Olivia S Rissland, Neelanjan Mukherjee","doi":"10.1101/gr.279526.124","DOIUrl":null,"url":null,"abstract":"The poly(A) signal, together with auxiliary elements, directs cleavage of a pre-mRNA and thus determines the 3' end of the mature transcript. In many species, including humans, the poly(A) signal is an AAUAAA hexamer, but we recently found that the deeply branching eukaryote <em>Giardia lamblia</em> uses a distinct hexamer (AGURAA) and lacks any known auxiliary elements. Our discovery prompted us to explore the evolutionary dynamics of poly(A) signals and auxiliary elements in the eukaryotic kingdom. We used direct RNA sequencing to determine poly(A) signals for four protists within the Metamonada clade (which also contains <em>Giardia lamblia</em>) and two outgroup protists. These experiments revealed that the AAUAAA hexamer serves as the poly(A) signal in at least four different eukaryotic clades, indicating that it is likely the ancestral signal, whereas the unusual <em>Giardia</em> version is derived. We found that the use and relative strengths of auxiliary elements are also surprisingly plastic; in fact, within Metamonada, species like <em>Giardia lamblia</em> make use of a previously unrecognized auxiliary element where nucleotides flanking the poly(A) signal itself specify genuine cleavage sites. Thus, despite the fundamental nature of pre-mRNA cleavage for the expression of all protein-coding genes, the motifs controlling this process are dynamic on evolutionary timescales, providing motivation for future biochemical and structural studies as well as new therapeutic angles to target eukaryotic pathogens.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary dynamics of polyadenylation signals and their recognition strategies in protists\",\"authors\":\"Marcin P Sajek, Danielle Y Bilodeau, Michael A Beer, Emma Horton, Yukiko Miyamoto, Katrina B Velle, Lars Eckmann, Lillian Fritz-Laylin, Olivia S Rissland, Neelanjan Mukherjee\",\"doi\":\"10.1101/gr.279526.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The poly(A) signal, together with auxiliary elements, directs cleavage of a pre-mRNA and thus determines the 3' end of the mature transcript. In many species, including humans, the poly(A) signal is an AAUAAA hexamer, but we recently found that the deeply branching eukaryote <em>Giardia lamblia</em> uses a distinct hexamer (AGURAA) and lacks any known auxiliary elements. Our discovery prompted us to explore the evolutionary dynamics of poly(A) signals and auxiliary elements in the eukaryotic kingdom. We used direct RNA sequencing to determine poly(A) signals for four protists within the Metamonada clade (which also contains <em>Giardia lamblia</em>) and two outgroup protists. These experiments revealed that the AAUAAA hexamer serves as the poly(A) signal in at least four different eukaryotic clades, indicating that it is likely the ancestral signal, whereas the unusual <em>Giardia</em> version is derived. We found that the use and relative strengths of auxiliary elements are also surprisingly plastic; in fact, within Metamonada, species like <em>Giardia lamblia</em> make use of a previously unrecognized auxiliary element where nucleotides flanking the poly(A) signal itself specify genuine cleavage sites. Thus, despite the fundamental nature of pre-mRNA cleavage for the expression of all protein-coding genes, the motifs controlling this process are dynamic on evolutionary timescales, providing motivation for future biochemical and structural studies as well as new therapeutic angles to target eukaryotic pathogens.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279526.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279526.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evolutionary dynamics of polyadenylation signals and their recognition strategies in protists
The poly(A) signal, together with auxiliary elements, directs cleavage of a pre-mRNA and thus determines the 3' end of the mature transcript. In many species, including humans, the poly(A) signal is an AAUAAA hexamer, but we recently found that the deeply branching eukaryote Giardia lamblia uses a distinct hexamer (AGURAA) and lacks any known auxiliary elements. Our discovery prompted us to explore the evolutionary dynamics of poly(A) signals and auxiliary elements in the eukaryotic kingdom. We used direct RNA sequencing to determine poly(A) signals for four protists within the Metamonada clade (which also contains Giardia lamblia) and two outgroup protists. These experiments revealed that the AAUAAA hexamer serves as the poly(A) signal in at least four different eukaryotic clades, indicating that it is likely the ancestral signal, whereas the unusual Giardia version is derived. We found that the use and relative strengths of auxiliary elements are also surprisingly plastic; in fact, within Metamonada, species like Giardia lamblia make use of a previously unrecognized auxiliary element where nucleotides flanking the poly(A) signal itself specify genuine cleavage sites. Thus, despite the fundamental nature of pre-mRNA cleavage for the expression of all protein-coding genes, the motifs controlling this process are dynamic on evolutionary timescales, providing motivation for future biochemical and structural studies as well as new therapeutic angles to target eukaryotic pathogens.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.