光诱导滑动铁电体中铁电极化的完全逆转

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-09-27 DOI:10.1103/physrevlett.133.136902
Qing Yang, Sheng Meng
{"title":"光诱导滑动铁电体中铁电极化的完全逆转","authors":"Qing Yang, Sheng Meng","doi":"10.1103/physrevlett.133.136902","DOIUrl":null,"url":null,"abstract":"Previous experiments have provided evidence of sliding ferroelectricity and photoexcited interlayer shear displacement in two-dimensional materials, respectively. Herein, we find that a complete reversal of vertical ferroelectric polarization can be achieved within an astonishing 0.5 ps in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mtext>−</mtext><mi>BN</mi></mrow></math> bilayer by laser illumination. Comprehensive analysis suggests that ferroelectric polarization switching originates from laser-induced interlayer sliding triggered by selective excitation of multiple phonons. The interlayer electron excitation from the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>p</mi><mi>z</mi></msub></mrow></math> orbitals of the upper layer N atoms to the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>p</mi><mi>z</mi></msub></mrow></math> orbitals of the lower layer B atoms produces desirable and directional interlayer forces activating the in-plane optical TO-1 and LO-1 phonon modes. The atomic motions driven by the coupling of TO-1 and LO-1 modes are coherent with ferroelectric soft mode, thus modulating the dynamical potential energy surface and resulting in ultrafast ferroelectric polarization reversal. Our work provides a novel microscopic insight into ultrafast polarization switching in sliding ferroelectrics.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-Induced Complete Reversal of Ferroelectric Polarization in Sliding Ferroelectrics\",\"authors\":\"Qing Yang, Sheng Meng\",\"doi\":\"10.1103/physrevlett.133.136902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous experiments have provided evidence of sliding ferroelectricity and photoexcited interlayer shear displacement in two-dimensional materials, respectively. Herein, we find that a complete reversal of vertical ferroelectric polarization can be achieved within an astonishing 0.5 ps in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>h</mi><mtext>−</mtext><mi>BN</mi></mrow></math> bilayer by laser illumination. Comprehensive analysis suggests that ferroelectric polarization switching originates from laser-induced interlayer sliding triggered by selective excitation of multiple phonons. The interlayer electron excitation from the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>p</mi><mi>z</mi></msub></mrow></math> orbitals of the upper layer N atoms to the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>p</mi><mi>z</mi></msub></mrow></math> orbitals of the lower layer B atoms produces desirable and directional interlayer forces activating the in-plane optical TO-1 and LO-1 phonon modes. The atomic motions driven by the coupling of TO-1 and LO-1 modes are coherent with ferroelectric soft mode, thus modulating the dynamical potential energy surface and resulting in ultrafast ferroelectric polarization reversal. Our work provides a novel microscopic insight into ultrafast polarization switching in sliding ferroelectrics.\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.133.136902\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.136902","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

以前的实验分别提供了二维材料中滑动铁电性和光激发层间剪切位移的证据。在这里,我们发现在激光照射下,h-BN 双电层可以在惊人的 0.5 ps 内实现垂直铁电极化的完全逆转。综合分析表明,铁电极化切换源于激光诱导的层间滑动,由多个声子的选择性激发引发。从上层 N 原子的 pz 轨道到下层 B 原子的 pz 轨道的层间电子激发产生了理想的定向层间力,激活了面内光学 TO-1 和 LO-1 声子模式。由 TO-1 和 LO-1 模式耦合驱动的原子运动与铁电软模式相干,从而调节了动态势能面,导致超快铁电极化反转。我们的研究为滑动铁电中的超快极化转换提供了新的微观视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Light-Induced Complete Reversal of Ferroelectric Polarization in Sliding Ferroelectrics
Previous experiments have provided evidence of sliding ferroelectricity and photoexcited interlayer shear displacement in two-dimensional materials, respectively. Herein, we find that a complete reversal of vertical ferroelectric polarization can be achieved within an astonishing 0.5 ps in hBN bilayer by laser illumination. Comprehensive analysis suggests that ferroelectric polarization switching originates from laser-induced interlayer sliding triggered by selective excitation of multiple phonons. The interlayer electron excitation from the pz orbitals of the upper layer N atoms to the pz orbitals of the lower layer B atoms produces desirable and directional interlayer forces activating the in-plane optical TO-1 and LO-1 phonon modes. The atomic motions driven by the coupling of TO-1 and LO-1 modes are coherent with ferroelectric soft mode, thus modulating the dynamical potential energy surface and resulting in ultrafast ferroelectric polarization reversal. Our work provides a novel microscopic insight into ultrafast polarization switching in sliding ferroelectrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1