免疫调节水凝胶协调巨噬细胞的再生反应和血管生成,促进慢性伤口愈合

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Biomaterials Pub Date : 2024-09-24 DOI:10.1016/j.biomaterials.2024.122848
{"title":"免疫调节水凝胶协调巨噬细胞的再生反应和血管生成,促进慢性伤口愈合","authors":"","doi":"10.1016/j.biomaterials.2024.122848","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic wound healing often encounters challenges characterized by prolonged inflammation and impaired angiogenesis. While the immune response plays a pivotal role in orchestrating the intricate process of wound healing, excessive inflammation can hinder tissue repair. In this study, a bilayer alginate hydrogel system encapsulating polyelectrolyte complex nanoparticles (PCNs) loaded with anti-inflammatory cytokines and angiogenic growth factors is developed to address the challenges of chronic wound healing. The alginate hydrogel is designed using two distinct crosslinking methods to achieve differential degradation, thereby enabling precise spatial and temporal controlled release of PCNs. Initially, interleukin-10 (IL-10) is released to mitigate inflammation, while unsaturated PCNs bind and remove accumulated pro-inflammatory cytokines at the wound site. Subsequently, angiogenic growth factors, including vascular endothelial growth factor and platelet-derived growth factor, are released to promote vascularization and vessel maturation. Our results demonstrate that the bilayer hydrogel exhibits distinct degradation kinetics between the two layers, facilitating the staged release of multiple signaling molecules. In vitro experiments reveal that IL-10 can activate the Jak1/STAT3 pathway, thereby suppressing pro-inflammatory cytokines and chemokines while down-regulating inflammation-related genes. In vivo studies demonstrate that application of the hydrogel in chronic wounds using diabetic murine model promotes healing by positively modulating multiple integral reparative mechanisms. These include reducing inflammation, promoting macrophage polarization towards a pro-regenerative phenotype, enhancing keratinocyte migration, stimulating angiogenesis, and expediting wound closure. In conclusion, our hydrogel system effectively mitigates inflammatory responses and provides essential physiological cues by inducing a synergistic angiogenic effect, thus offering a promising approach for the treatment of chronic wounds.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":null,"pages":null},"PeriodicalIF":12.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunomodulatory hydrogel orchestrates pro-regenerative response of macrophages and angiogenesis for chronic wound healing\",\"authors\":\"\",\"doi\":\"10.1016/j.biomaterials.2024.122848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chronic wound healing often encounters challenges characterized by prolonged inflammation and impaired angiogenesis. While the immune response plays a pivotal role in orchestrating the intricate process of wound healing, excessive inflammation can hinder tissue repair. In this study, a bilayer alginate hydrogel system encapsulating polyelectrolyte complex nanoparticles (PCNs) loaded with anti-inflammatory cytokines and angiogenic growth factors is developed to address the challenges of chronic wound healing. The alginate hydrogel is designed using two distinct crosslinking methods to achieve differential degradation, thereby enabling precise spatial and temporal controlled release of PCNs. Initially, interleukin-10 (IL-10) is released to mitigate inflammation, while unsaturated PCNs bind and remove accumulated pro-inflammatory cytokines at the wound site. Subsequently, angiogenic growth factors, including vascular endothelial growth factor and platelet-derived growth factor, are released to promote vascularization and vessel maturation. Our results demonstrate that the bilayer hydrogel exhibits distinct degradation kinetics between the two layers, facilitating the staged release of multiple signaling molecules. In vitro experiments reveal that IL-10 can activate the Jak1/STAT3 pathway, thereby suppressing pro-inflammatory cytokines and chemokines while down-regulating inflammation-related genes. In vivo studies demonstrate that application of the hydrogel in chronic wounds using diabetic murine model promotes healing by positively modulating multiple integral reparative mechanisms. These include reducing inflammation, promoting macrophage polarization towards a pro-regenerative phenotype, enhancing keratinocyte migration, stimulating angiogenesis, and expediting wound closure. In conclusion, our hydrogel system effectively mitigates inflammatory responses and provides essential physiological cues by inducing a synergistic angiogenic effect, thus offering a promising approach for the treatment of chronic wounds.</div></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014296122400382X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014296122400382X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

慢性伤口愈合经常会遇到以炎症持续和血管生成受损为特征的挑战。虽然免疫反应在协调错综复杂的伤口愈合过程中起着关键作用,但过度炎症会阻碍组织修复。本研究开发了一种双层藻酸盐水凝胶系统,该系统包裹了含有抗炎细胞因子和血管生成生长因子的聚电解质复合纳米粒子(PCNs),以应对慢性伤口愈合的挑战。藻酸盐水凝胶的设计采用了两种不同的交联方法,以实现不同的降解,从而实现 PCNs 在空间和时间上的精确控释。最初,白细胞介素-10(IL-10)会被释放出来以减轻炎症,而不饱和 PCN 则会结合并清除伤口部位积聚的促炎细胞因子。随后,血管生成生长因子(包括血管内皮生长因子和血小板衍生生长因子)被释放出来,以促进血管生成和血管成熟。我们的研究结果表明,双层水凝胶在两层之间表现出不同的降解动力学,有利于分阶段释放多种信号分子。体外实验显示,IL-10 能激活 Jak1/STAT3 通路,从而抑制促炎细胞因子和趋化因子,同时下调炎症相关基因。体内研究表明,利用糖尿病小鼠模型将水凝胶应用于慢性伤口,可通过积极调节多种整体修复机制促进伤口愈合。这些机制包括减少炎症、促进巨噬细胞向有利于再生的表型极化、增强角质形成细胞迁移、刺激血管生成和加速伤口闭合。总之,我们的水凝胶系统能有效减轻炎症反应,并通过诱导协同血管生成效应提供重要的生理线索,从而为治疗慢性伤口提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Immunomodulatory hydrogel orchestrates pro-regenerative response of macrophages and angiogenesis for chronic wound healing
Chronic wound healing often encounters challenges characterized by prolonged inflammation and impaired angiogenesis. While the immune response plays a pivotal role in orchestrating the intricate process of wound healing, excessive inflammation can hinder tissue repair. In this study, a bilayer alginate hydrogel system encapsulating polyelectrolyte complex nanoparticles (PCNs) loaded with anti-inflammatory cytokines and angiogenic growth factors is developed to address the challenges of chronic wound healing. The alginate hydrogel is designed using two distinct crosslinking methods to achieve differential degradation, thereby enabling precise spatial and temporal controlled release of PCNs. Initially, interleukin-10 (IL-10) is released to mitigate inflammation, while unsaturated PCNs bind and remove accumulated pro-inflammatory cytokines at the wound site. Subsequently, angiogenic growth factors, including vascular endothelial growth factor and platelet-derived growth factor, are released to promote vascularization and vessel maturation. Our results demonstrate that the bilayer hydrogel exhibits distinct degradation kinetics between the two layers, facilitating the staged release of multiple signaling molecules. In vitro experiments reveal that IL-10 can activate the Jak1/STAT3 pathway, thereby suppressing pro-inflammatory cytokines and chemokines while down-regulating inflammation-related genes. In vivo studies demonstrate that application of the hydrogel in chronic wounds using diabetic murine model promotes healing by positively modulating multiple integral reparative mechanisms. These include reducing inflammation, promoting macrophage polarization towards a pro-regenerative phenotype, enhancing keratinocyte migration, stimulating angiogenesis, and expediting wound closure. In conclusion, our hydrogel system effectively mitigates inflammatory responses and provides essential physiological cues by inducing a synergistic angiogenic effect, thus offering a promising approach for the treatment of chronic wounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
期刊最新文献
Immunomodulatory hydrogel orchestrates pro-regenerative response of macrophages and angiogenesis for chronic wound healing Direct extrusion of multifascicle prevascularized human skeletal muscle for volumetric muscle loss surgery Sustained therapeutic effects of self-assembled hyaluronic acid nanoparticles loaded with α-Ketoglutarate in various osteoarthritis stages Retraction notice to "Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes" [Biomaterials 34/1 (2013) 14383]. Tertiary lymphoid structure formation induced by LIGHT-engineered and photosensitive nanoparticles-decorated bacteria enhances immune response against colorectal cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1