Marcin Nowak , Eduardo Divo , Tomasz Borkowski , Ewelina Marciniak , Marek Rojczyk , Ryszard Białecki
{"title":"流经人工机械主动脉瓣:数值模型和实验研究","authors":"Marcin Nowak , Eduardo Divo , Tomasz Borkowski , Ewelina Marciniak , Marek Rojczyk , Ryszard Białecki","doi":"10.1016/j.camwa.2024.09.010","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents a numerical model dedicated for virtual patient diagnostics in the field of synthetic valve implantation. The model operates based on computational fluid dynamics solver with implemented rigid body motion solver. Characteristic indicators related to the prosthetic valve were determined to assess the correctness of cardiac system operation after implantation. A novel approach for dynamic time discretization was developed for reliable and time-efficient calculation. The solver efficiency and computational savings due to application of the developed time-discretization scheme is discussed. Numerical results were validated using experimental data acquired from a test rig, including mass flow meter, pressure transducers, and valve holder designed for this purpose. Multivariant analysis of the model constant was performed towards different levels of the valve resistance to motion. The in-house algorithm was prepared to automatically determine the prosthetic valve position from fast camera images.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow through a prosthetic mechanical aortic valve: Numerical model and experimental study\",\"authors\":\"Marcin Nowak , Eduardo Divo , Tomasz Borkowski , Ewelina Marciniak , Marek Rojczyk , Ryszard Białecki\",\"doi\":\"10.1016/j.camwa.2024.09.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research presents a numerical model dedicated for virtual patient diagnostics in the field of synthetic valve implantation. The model operates based on computational fluid dynamics solver with implemented rigid body motion solver. Characteristic indicators related to the prosthetic valve were determined to assess the correctness of cardiac system operation after implantation. A novel approach for dynamic time discretization was developed for reliable and time-efficient calculation. The solver efficiency and computational savings due to application of the developed time-discretization scheme is discussed. Numerical results were validated using experimental data acquired from a test rig, including mass flow meter, pressure transducers, and valve holder designed for this purpose. Multivariant analysis of the model constant was performed towards different levels of the valve resistance to motion. The in-house algorithm was prepared to automatically determine the prosthetic valve position from fast camera images.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089812212400419X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212400419X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Flow through a prosthetic mechanical aortic valve: Numerical model and experimental study
This research presents a numerical model dedicated for virtual patient diagnostics in the field of synthetic valve implantation. The model operates based on computational fluid dynamics solver with implemented rigid body motion solver. Characteristic indicators related to the prosthetic valve were determined to assess the correctness of cardiac system operation after implantation. A novel approach for dynamic time discretization was developed for reliable and time-efficient calculation. The solver efficiency and computational savings due to application of the developed time-discretization scheme is discussed. Numerical results were validated using experimental data acquired from a test rig, including mass flow meter, pressure transducers, and valve holder designed for this purpose. Multivariant analysis of the model constant was performed towards different levels of the valve resistance to motion. The in-house algorithm was prepared to automatically determine the prosthetic valve position from fast camera images.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).