{"title":"通过激光粉末床熔融技术制造的热处理 Ti-6Al-4V 中,α-壳促使疲劳裂纹从表面萌生","authors":"Quentin Gaillard , Florian Steinhilber , Amélie Larguier , Xavier Boulnat , Jean-Yves Buffiere , Guilhem Martin , Sylvain Dancette , Sophie Cazottes , Rémy Dendievel , Christophe Desrayaud","doi":"10.1016/j.ijfatigue.2024.108621","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigates the effect of the formation of an oxygen-stabilised titanium alpha layer – called alpha-case at the surface – on the fatigue properties of Ti-6Al-4V (Ti64) alloy components produced by Laser Powder Bed Fusion (L-PBF). Three post processing heat treatments with different controlled atmospheres were carried out on samples with as-built surfaces to evaluate how differences in alpha-case layer thickness and hardness affect the material’s susceptibility to surface embrittlement and its overall fatigue performance. The investigation includes bulk and subsurface microstructural analysis, surface characterisation by X-ray computed tomography (XCT), and fatigue testing. Key findings show that alpha-case layers can reduce the fatigue resistance of L-PBF fabricated Ti64. The presence of a 70<span><math><mo>±</mo></math></span>3 µm thick alpha-case layer was found to promote crack initiation. This is emphasised by a higher density of initiated cracks, thus leading to a reduction in fatigue life. Conversely, thinner alpha-case layers were found to have a reduced impact on the fatigue performance, highlighting the critical role of post processing heat treatments in modulating the fatigue resistance of the material. The use of XCT to characterise the surfaces of the specimens in 3D confirms that fatigue cracks primarily initiate at surface notches, highlighting the predominance of as-built surfaces over microstructure in determining the fatigue resistance of L-PBF Ti64 components.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108621"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alpha-case promotes fatigue cracks initiation from the surface in heat treated Ti-6Al-4V fabricated by Laser Powder Bed Fusion\",\"authors\":\"Quentin Gaillard , Florian Steinhilber , Amélie Larguier , Xavier Boulnat , Jean-Yves Buffiere , Guilhem Martin , Sylvain Dancette , Sophie Cazottes , Rémy Dendievel , Christophe Desrayaud\",\"doi\":\"10.1016/j.ijfatigue.2024.108621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research investigates the effect of the formation of an oxygen-stabilised titanium alpha layer – called alpha-case at the surface – on the fatigue properties of Ti-6Al-4V (Ti64) alloy components produced by Laser Powder Bed Fusion (L-PBF). Three post processing heat treatments with different controlled atmospheres were carried out on samples with as-built surfaces to evaluate how differences in alpha-case layer thickness and hardness affect the material’s susceptibility to surface embrittlement and its overall fatigue performance. The investigation includes bulk and subsurface microstructural analysis, surface characterisation by X-ray computed tomography (XCT), and fatigue testing. Key findings show that alpha-case layers can reduce the fatigue resistance of L-PBF fabricated Ti64. The presence of a 70<span><math><mo>±</mo></math></span>3 µm thick alpha-case layer was found to promote crack initiation. This is emphasised by a higher density of initiated cracks, thus leading to a reduction in fatigue life. Conversely, thinner alpha-case layers were found to have a reduced impact on the fatigue performance, highlighting the critical role of post processing heat treatments in modulating the fatigue resistance of the material. The use of XCT to characterise the surfaces of the specimens in 3D confirms that fatigue cracks primarily initiate at surface notches, highlighting the predominance of as-built surfaces over microstructure in determining the fatigue resistance of L-PBF Ti64 components.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"190 \",\"pages\":\"Article 108621\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324004808\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324004808","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Alpha-case promotes fatigue cracks initiation from the surface in heat treated Ti-6Al-4V fabricated by Laser Powder Bed Fusion
This research investigates the effect of the formation of an oxygen-stabilised titanium alpha layer – called alpha-case at the surface – on the fatigue properties of Ti-6Al-4V (Ti64) alloy components produced by Laser Powder Bed Fusion (L-PBF). Three post processing heat treatments with different controlled atmospheres were carried out on samples with as-built surfaces to evaluate how differences in alpha-case layer thickness and hardness affect the material’s susceptibility to surface embrittlement and its overall fatigue performance. The investigation includes bulk and subsurface microstructural analysis, surface characterisation by X-ray computed tomography (XCT), and fatigue testing. Key findings show that alpha-case layers can reduce the fatigue resistance of L-PBF fabricated Ti64. The presence of a 703 µm thick alpha-case layer was found to promote crack initiation. This is emphasised by a higher density of initiated cracks, thus leading to a reduction in fatigue life. Conversely, thinner alpha-case layers were found to have a reduced impact on the fatigue performance, highlighting the critical role of post processing heat treatments in modulating the fatigue resistance of the material. The use of XCT to characterise the surfaces of the specimens in 3D confirms that fatigue cracks primarily initiate at surface notches, highlighting the predominance of as-built surfaces over microstructure in determining the fatigue resistance of L-PBF Ti64 components.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.