Juliette Gerbaux , Guy Desaulniers , Quentin Cappart
{"title":"基于机器学习的电动公交车调度列生成启发法","authors":"Juliette Gerbaux , Guy Desaulniers , Quentin Cappart","doi":"10.1016/j.cor.2024.106848","DOIUrl":null,"url":null,"abstract":"<div><div>Bus scheduling in public transit consists in determining a set of bus schedules to cover a set of timetabled trips at minimum cost. This planning process has evolved recently with the advent of electric buses that introduce constraints related to vehicle autonomy and battery charging process. In particular, column-generation algorithms have regained popularity for solving problems similar to the one considered in this paper, namely, the multi-depot electric vehicle scheduling problem (MDEVSP) with a piecewise linear charging function and capacitated charging stations. To tackle large-scale MDEVSP instances, we design a column generation (CG) heuristic that relies on reduced-sized networks to generate the bus schedules. The reduction is achieved by selecting a priori a subset of the arcs. Multiple selection techniques are studied: some are based on a greedy heuristic and others exploit a supervised learning algorithm relying on a graph neural network. It turns out that combining both selection types yields the best computational results. On 405 artificial instances involving between 568 and 1474 trips and generated from real bus lines in Montreal, the network reduction technique produced an average computational time reduction of 71.6% (compared to the same CG heuristic but without network reduction), while deteriorating solution cost by an average of 2.2%. On 8 larger instances containing more than 2500 trips on average, the proposed solution method also provided an average time saving of 52.5% with an average gap of 4.2% thanks to a transfer learning approach.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"173 ","pages":"Article 106848"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine-learning-based column generation heuristic for electric bus scheduling\",\"authors\":\"Juliette Gerbaux , Guy Desaulniers , Quentin Cappart\",\"doi\":\"10.1016/j.cor.2024.106848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bus scheduling in public transit consists in determining a set of bus schedules to cover a set of timetabled trips at minimum cost. This planning process has evolved recently with the advent of electric buses that introduce constraints related to vehicle autonomy and battery charging process. In particular, column-generation algorithms have regained popularity for solving problems similar to the one considered in this paper, namely, the multi-depot electric vehicle scheduling problem (MDEVSP) with a piecewise linear charging function and capacitated charging stations. To tackle large-scale MDEVSP instances, we design a column generation (CG) heuristic that relies on reduced-sized networks to generate the bus schedules. The reduction is achieved by selecting a priori a subset of the arcs. Multiple selection techniques are studied: some are based on a greedy heuristic and others exploit a supervised learning algorithm relying on a graph neural network. It turns out that combining both selection types yields the best computational results. On 405 artificial instances involving between 568 and 1474 trips and generated from real bus lines in Montreal, the network reduction technique produced an average computational time reduction of 71.6% (compared to the same CG heuristic but without network reduction), while deteriorating solution cost by an average of 2.2%. On 8 larger instances containing more than 2500 trips on average, the proposed solution method also provided an average time saving of 52.5% with an average gap of 4.2% thanks to a transfer learning approach.</div></div>\",\"PeriodicalId\":10542,\"journal\":{\"name\":\"Computers & Operations Research\",\"volume\":\"173 \",\"pages\":\"Article 106848\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Operations Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305054824003204\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824003204","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A machine-learning-based column generation heuristic for electric bus scheduling
Bus scheduling in public transit consists in determining a set of bus schedules to cover a set of timetabled trips at minimum cost. This planning process has evolved recently with the advent of electric buses that introduce constraints related to vehicle autonomy and battery charging process. In particular, column-generation algorithms have regained popularity for solving problems similar to the one considered in this paper, namely, the multi-depot electric vehicle scheduling problem (MDEVSP) with a piecewise linear charging function and capacitated charging stations. To tackle large-scale MDEVSP instances, we design a column generation (CG) heuristic that relies on reduced-sized networks to generate the bus schedules. The reduction is achieved by selecting a priori a subset of the arcs. Multiple selection techniques are studied: some are based on a greedy heuristic and others exploit a supervised learning algorithm relying on a graph neural network. It turns out that combining both selection types yields the best computational results. On 405 artificial instances involving between 568 and 1474 trips and generated from real bus lines in Montreal, the network reduction technique produced an average computational time reduction of 71.6% (compared to the same CG heuristic but without network reduction), while deteriorating solution cost by an average of 2.2%. On 8 larger instances containing more than 2500 trips on average, the proposed solution method also provided an average time saving of 52.5% with an average gap of 4.2% thanks to a transfer learning approach.
期刊介绍:
Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.