通过概率机器学习提高数据驱动湍流建模的通用性

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-09-24 DOI:10.1016/j.compfluid.2024.106443
Joel Ho , Nick Pepper , Tim Dodwell
{"title":"通过概率机器学习提高数据驱动湍流建模的通用性","authors":"Joel Ho ,&nbsp;Nick Pepper ,&nbsp;Tim Dodwell","doi":"10.1016/j.compfluid.2024.106443","DOIUrl":null,"url":null,"abstract":"<div><div>A probabilistic machine learning model is introduced to augment the <span><math><mrow><mi>k</mi><mo>−</mo><mi>ω</mi><mspace></mspace><mi>S</mi><mi>S</mi><mi>T</mi></mrow></math></span> turbulence model in order to improve the modelling of separated flows and the generalisability of learnt corrections. Increasingly, machine learning methods have been used to leverage experimental and high-fidelity simulation data, improving the accuracy of the Reynolds Averaged Navier–Stokes (RANS) turbulence models widely used in industry. A significant challenge for such methods is their ability to generalise to unseen geometries and flow conditions. Furthermore, heterogeneous datasets containing a mix of experimental and simulation data must be efficiently handled. In this work, field inversion and an ensemble of Gaussian Process Emulators (GPEs) is employed to address both of these challenges. The ensemble model is applied to a range of benchmark test cases, demonstrating improved turbulence modelling for cases involving separated flows with adverse pressure gradients, where RANS simulations are understood to be unreliable. Perhaps more significantly, the simulation reverted to the uncorrected model in regions of the flow exhibiting physics outside of the training data.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"284 ","pages":"Article 106443"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic machine learning to improve generalisation of data-driven turbulence modelling\",\"authors\":\"Joel Ho ,&nbsp;Nick Pepper ,&nbsp;Tim Dodwell\",\"doi\":\"10.1016/j.compfluid.2024.106443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A probabilistic machine learning model is introduced to augment the <span><math><mrow><mi>k</mi><mo>−</mo><mi>ω</mi><mspace></mspace><mi>S</mi><mi>S</mi><mi>T</mi></mrow></math></span> turbulence model in order to improve the modelling of separated flows and the generalisability of learnt corrections. Increasingly, machine learning methods have been used to leverage experimental and high-fidelity simulation data, improving the accuracy of the Reynolds Averaged Navier–Stokes (RANS) turbulence models widely used in industry. A significant challenge for such methods is their ability to generalise to unseen geometries and flow conditions. Furthermore, heterogeneous datasets containing a mix of experimental and simulation data must be efficiently handled. In this work, field inversion and an ensemble of Gaussian Process Emulators (GPEs) is employed to address both of these challenges. The ensemble model is applied to a range of benchmark test cases, demonstrating improved turbulence modelling for cases involving separated flows with adverse pressure gradients, where RANS simulations are understood to be unreliable. Perhaps more significantly, the simulation reverted to the uncorrected model in regions of the flow exhibiting physics outside of the training data.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"284 \",\"pages\":\"Article 106443\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024002743\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024002743","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种概率机器学习模型,用于增强 k-ωSST 湍流模型,以改进分离流建模和所学修正的通用性。机器学习方法越来越多地用于利用实验和高保真模拟数据,以提高工业中广泛使用的雷诺平均纳维-斯托克斯(RANS)湍流模型的精度。此类方法面临的一个重大挑战是,它们是否能够推广到未见过的几何形状和流动条件。此外,必须有效处理包含实验和模拟数据混合的异构数据集。在这项工作中,采用了场反演和高斯过程仿真器(GPE)集合来应对这两个挑战。该集合模型被应用于一系列基准测试案例,证明在涉及具有不利压力梯度的分离流的案例中,湍流建模得到了改进,而在这些案例中,RANS 模拟被认为是不可靠的。也许更重要的是,在表现出训练数据之外的物理特性的流动区域,模拟恢复到了未经修正的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic machine learning to improve generalisation of data-driven turbulence modelling
A probabilistic machine learning model is introduced to augment the kωSST turbulence model in order to improve the modelling of separated flows and the generalisability of learnt corrections. Increasingly, machine learning methods have been used to leverage experimental and high-fidelity simulation data, improving the accuracy of the Reynolds Averaged Navier–Stokes (RANS) turbulence models widely used in industry. A significant challenge for such methods is their ability to generalise to unseen geometries and flow conditions. Furthermore, heterogeneous datasets containing a mix of experimental and simulation data must be efficiently handled. In this work, field inversion and an ensemble of Gaussian Process Emulators (GPEs) is employed to address both of these challenges. The ensemble model is applied to a range of benchmark test cases, demonstrating improved turbulence modelling for cases involving separated flows with adverse pressure gradients, where RANS simulations are understood to be unreliable. Perhaps more significantly, the simulation reverted to the uncorrected model in regions of the flow exhibiting physics outside of the training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Editorial Board Efficient quantum lattice gas automata Energy-consistent discretization of viscous dissipation with application to natural convection flow The numerical analysis of complete and partial electrocoalescence in the droplet-layer system employing the sharp interface technique for multiphase-medium simulation Numerical investigation on the end effects of the flow past a finite rotating circular cylinder with two free ends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1