Jorge A. Custodio-Mendoza, Patryk Pokorski, Havva Aktaş, Marcin A. Kurek
{"title":"利用超声辅助酸水解法快速高效地测定蛋白质分离物中的总氨基酸的高效液相色谱-紫外光谱法","authors":"Jorge A. Custodio-Mendoza, Patryk Pokorski, Havva Aktaş, Marcin A. Kurek","doi":"10.1016/j.ultsonch.2024.107082","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the optimization and validation of an ultrasound-assisted acid method for the HPLC-UV determination of amino acids in plant-based proteins. The research focuses on enhancing hydrolysis efficiency and reducing environmental impact. Ultrasound treatment significantly accelerated hydrolysis by creating cavitation, which increases local pressure and temperature, leading to faster reaction rates. The optimal condition was a 30-minute treatment at 90 °C with 6 M hydrochloric acid. The 9-fluorenylmethyloxycarbonyl chloride derivatization was best performed at pH 9.0 using borate buffer, ethanol as the organic solvent, and a 5-minute derivatization time with a 5 mM concentration. The method’s analytical performance, validated according to FDA guidelines, showed excellent selectivity, specificity, linearity (r<sup>2</sup> > 0.999), accuracy (recovery between 80–118 %), and precision (RSD<10.9). The analysis of 15 plant-based proteins revealed distinct amino acid profiles. Compared to traditional acid hydrolysis methods, the ultrasound-assisted approach demonstrated no significant difference in results (p-value > 0.05), confirming its reliability. The optimized ultrasound-assisted method is a reliable and efficient alternative for amino acid analysis, offering significant cost and time savings while maintaining high analytical performance. These findings are crucial for nutritional planning and developing functional foods to improve health outcomes.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"111 ","pages":"Article 107082"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and efficient high-performance liquid chromatography-ultraviolet determination of total amino acids in protein isolates by ultrasound-assisted acid hydrolysis\",\"authors\":\"Jorge A. Custodio-Mendoza, Patryk Pokorski, Havva Aktaş, Marcin A. Kurek\",\"doi\":\"10.1016/j.ultsonch.2024.107082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents the optimization and validation of an ultrasound-assisted acid method for the HPLC-UV determination of amino acids in plant-based proteins. The research focuses on enhancing hydrolysis efficiency and reducing environmental impact. Ultrasound treatment significantly accelerated hydrolysis by creating cavitation, which increases local pressure and temperature, leading to faster reaction rates. The optimal condition was a 30-minute treatment at 90 °C with 6 M hydrochloric acid. The 9-fluorenylmethyloxycarbonyl chloride derivatization was best performed at pH 9.0 using borate buffer, ethanol as the organic solvent, and a 5-minute derivatization time with a 5 mM concentration. The method’s analytical performance, validated according to FDA guidelines, showed excellent selectivity, specificity, linearity (r<sup>2</sup> > 0.999), accuracy (recovery between 80–118 %), and precision (RSD<10.9). The analysis of 15 plant-based proteins revealed distinct amino acid profiles. Compared to traditional acid hydrolysis methods, the ultrasound-assisted approach demonstrated no significant difference in results (p-value > 0.05), confirming its reliability. The optimized ultrasound-assisted method is a reliable and efficient alternative for amino acid analysis, offering significant cost and time savings while maintaining high analytical performance. These findings are crucial for nutritional planning and developing functional foods to improve health outcomes.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"111 \",\"pages\":\"Article 107082\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417724003304\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724003304","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Rapid and efficient high-performance liquid chromatography-ultraviolet determination of total amino acids in protein isolates by ultrasound-assisted acid hydrolysis
This study presents the optimization and validation of an ultrasound-assisted acid method for the HPLC-UV determination of amino acids in plant-based proteins. The research focuses on enhancing hydrolysis efficiency and reducing environmental impact. Ultrasound treatment significantly accelerated hydrolysis by creating cavitation, which increases local pressure and temperature, leading to faster reaction rates. The optimal condition was a 30-minute treatment at 90 °C with 6 M hydrochloric acid. The 9-fluorenylmethyloxycarbonyl chloride derivatization was best performed at pH 9.0 using borate buffer, ethanol as the organic solvent, and a 5-minute derivatization time with a 5 mM concentration. The method’s analytical performance, validated according to FDA guidelines, showed excellent selectivity, specificity, linearity (r2 > 0.999), accuracy (recovery between 80–118 %), and precision (RSD<10.9). The analysis of 15 plant-based proteins revealed distinct amino acid profiles. Compared to traditional acid hydrolysis methods, the ultrasound-assisted approach demonstrated no significant difference in results (p-value > 0.05), confirming its reliability. The optimized ultrasound-assisted method is a reliable and efficient alternative for amino acid analysis, offering significant cost and time savings while maintaining high analytical performance. These findings are crucial for nutritional planning and developing functional foods to improve health outcomes.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.