利用双能 CT 诊断在常规计算机断层扫描(CT)中未发现骨病的新发多发性骨髓瘤

IF 3.4 2区 医学 Q2 Medicine Journal of Bone Oncology Pub Date : 2024-09-24 DOI:10.1016/j.jbo.2024.100636
Nan Jiang , Yu Xia , Mingcong Luo , Jianhua Chen , Zongjian Qiu , Jianfang Liu
{"title":"利用双能 CT 诊断在常规计算机断层扫描(CT)中未发现骨病的新发多发性骨髓瘤","authors":"Nan Jiang ,&nbsp;Yu Xia ,&nbsp;Mingcong Luo ,&nbsp;Jianhua Chen ,&nbsp;Zongjian Qiu ,&nbsp;Jianfang Liu","doi":"10.1016/j.jbo.2024.100636","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To evaluate the diagnostic utility of fat (hydroxyapatite) density [D<sub>Fat (HAP)</sub>] on dual-energy computed tomography (DECT) for identifying clinical diagnosed multiple myeloma without bone disease (MNBD) that is not visible on conventional CT scans.</div></div><div><h3>Material and Methods</h3><div>In this age-gender-examination sites matched case control prospective study, Chest and/or abdominal images on Revolution CT of MNBDs and control subjects were consecutive enrolled in a 1:2 ratio from October 2022 to November 2023. Multiple myeloma was clinical diagnosed according to criteria of the International Myeloma Working Group. Regions of interest (ROIs) were drawn separately for all thoracolumbar vertebrae in the scanning range by two radiologists. Additionally, a radiologist specializing in musculoskeletal imaging supervised the process. D<sub>Fat (HAP)</sub> was extracted from each ROI. The spine was divided into upper thoracic (UPT), middle and lower thoracic (MLT), thoracolumbar (TL), and middle and lower lumbar (MLL) vertebrae. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the diagnostic performance of D<sub>Fat (HAP)</sub> in diagnosing multiple myeloma, and the sensitivity, specificity, and accuracy under the optimal cut-off were determined by Youden index (sensitivity + specificity −1).</div></div><div><h3>Results</h3><div>A total of 32 and MNBD patients and 64 control patients were included. The total number of ROIs outlined included MNBD group (n = 493) and control group (n = 986). For all vertebrae, D<sub>Fat(HAP)</sub> got average performance in the diagnosis of MNBD (AUC = 0.733, <em>p</em> &lt; 0.001) with a cut-off value of 958 (mg/cm<sup>3</sup>); the sensitivity, specificity, and accuracy were 58.8 %, 77.8 %, and 71.7 %, respectively. Regarding segment analysis, the diagnostic performance was good for all (AUC, 0.803–0.837; <em>p</em> &lt; 0.001) but the UPT segment (AUC = 0.692, <em>p</em> = 0.002). The optimal diagnostic cut-off values for the MLT, TL, and MLL vertebrae were 955 mg/cm<sup>3</sup>, 947 mg/cm<sup>3</sup>, and 947 mg/cm<sup>3</sup>, respectively; the sensitivity, specificity, and accuracy were 80.0 %-87.5 %, 71.9 %-82.6 %, and 77.1 %-81.6 %, respectively.</div></div><div><h3>Conclusion</h3><div>DECT was effective for detecting MNBD, and better diagnostic results can be obtained by grouping different spine segments.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of newly developed multiple myeloma without bone disease detectable on conventional computed tomography (CT) scan by using dual-energy CT\",\"authors\":\"Nan Jiang ,&nbsp;Yu Xia ,&nbsp;Mingcong Luo ,&nbsp;Jianhua Chen ,&nbsp;Zongjian Qiu ,&nbsp;Jianfang Liu\",\"doi\":\"10.1016/j.jbo.2024.100636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>To evaluate the diagnostic utility of fat (hydroxyapatite) density [D<sub>Fat (HAP)</sub>] on dual-energy computed tomography (DECT) for identifying clinical diagnosed multiple myeloma without bone disease (MNBD) that is not visible on conventional CT scans.</div></div><div><h3>Material and Methods</h3><div>In this age-gender-examination sites matched case control prospective study, Chest and/or abdominal images on Revolution CT of MNBDs and control subjects were consecutive enrolled in a 1:2 ratio from October 2022 to November 2023. Multiple myeloma was clinical diagnosed according to criteria of the International Myeloma Working Group. Regions of interest (ROIs) were drawn separately for all thoracolumbar vertebrae in the scanning range by two radiologists. Additionally, a radiologist specializing in musculoskeletal imaging supervised the process. D<sub>Fat (HAP)</sub> was extracted from each ROI. The spine was divided into upper thoracic (UPT), middle and lower thoracic (MLT), thoracolumbar (TL), and middle and lower lumbar (MLL) vertebrae. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the diagnostic performance of D<sub>Fat (HAP)</sub> in diagnosing multiple myeloma, and the sensitivity, specificity, and accuracy under the optimal cut-off were determined by Youden index (sensitivity + specificity −1).</div></div><div><h3>Results</h3><div>A total of 32 and MNBD patients and 64 control patients were included. The total number of ROIs outlined included MNBD group (n = 493) and control group (n = 986). For all vertebrae, D<sub>Fat(HAP)</sub> got average performance in the diagnosis of MNBD (AUC = 0.733, <em>p</em> &lt; 0.001) with a cut-off value of 958 (mg/cm<sup>3</sup>); the sensitivity, specificity, and accuracy were 58.8 %, 77.8 %, and 71.7 %, respectively. Regarding segment analysis, the diagnostic performance was good for all (AUC, 0.803–0.837; <em>p</em> &lt; 0.001) but the UPT segment (AUC = 0.692, <em>p</em> = 0.002). The optimal diagnostic cut-off values for the MLT, TL, and MLL vertebrae were 955 mg/cm<sup>3</sup>, 947 mg/cm<sup>3</sup>, and 947 mg/cm<sup>3</sup>, respectively; the sensitivity, specificity, and accuracy were 80.0 %-87.5 %, 71.9 %-82.6 %, and 77.1 %-81.6 %, respectively.</div></div><div><h3>Conclusion</h3><div>DECT was effective for detecting MNBD, and better diagnostic results can be obtained by grouping different spine segments.</div></div>\",\"PeriodicalId\":48806,\"journal\":{\"name\":\"Journal of Bone Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212137424001167\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001167","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目的评估双能计算机断层扫描(DECT)上的脂肪(羟基磷灰石)密度[DFat (HAP)]对鉴别临床诊断为无骨病的多发性骨髓瘤(MNBD)的诊断效用,该多发性骨髓瘤在常规 CT 扫描中不可见。多发性骨髓瘤根据国际骨髓瘤工作组的标准进行临床诊断。扫描范围内所有胸腰椎的感兴趣区(ROI)由两名放射科医生分别绘制。此外,一名专门从事肌肉骨骼成像的放射科医生对这一过程进行了监督。从每个 ROI 提取 DFat(HAP)。脊柱分为上胸椎(UPT)、中下胸椎(MLT)、胸腰椎(TL)和中下腰椎(MLL)。通过计算接收者操作特征曲线下面积(AUC)来评估 DFat(HAP)在诊断多发性骨髓瘤中的诊断性能,并通过 Youden 指数(灵敏度 + 特异性 -1)来确定最佳临界值下的灵敏度、特异性和准确性。概述的 ROI 总数包括 MNBD 组(n = 493)和对照组(n = 986)。对于所有椎体,DFat(HAP)在 MNBD 诊断中表现一般(AUC = 0.733,p < 0.001),临界值为 958(毫克/立方厘米);灵敏度、特异度和准确度分别为 58.8%、77.8% 和 71.7%。在节段分析方面,除 UPT 节段(AUC = 0.692,p = 0.002)外,所有节段的诊断性能都很好(AUC, 0.803-0.837; p < 0.001)。MLT、TL 和 MLL 椎体的最佳诊断临界值分别为 955 mg/cm3、947 mg/cm3 和 947 mg/cm3;灵敏度、特异性和准确性分别为 80.0 %-87.5 %、71.9 %-82.6 % 和 77.1 %-81.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diagnosis of newly developed multiple myeloma without bone disease detectable on conventional computed tomography (CT) scan by using dual-energy CT

Objective

To evaluate the diagnostic utility of fat (hydroxyapatite) density [DFat (HAP)] on dual-energy computed tomography (DECT) for identifying clinical diagnosed multiple myeloma without bone disease (MNBD) that is not visible on conventional CT scans.

Material and Methods

In this age-gender-examination sites matched case control prospective study, Chest and/or abdominal images on Revolution CT of MNBDs and control subjects were consecutive enrolled in a 1:2 ratio from October 2022 to November 2023. Multiple myeloma was clinical diagnosed according to criteria of the International Myeloma Working Group. Regions of interest (ROIs) were drawn separately for all thoracolumbar vertebrae in the scanning range by two radiologists. Additionally, a radiologist specializing in musculoskeletal imaging supervised the process. DFat (HAP) was extracted from each ROI. The spine was divided into upper thoracic (UPT), middle and lower thoracic (MLT), thoracolumbar (TL), and middle and lower lumbar (MLL) vertebrae. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the diagnostic performance of DFat (HAP) in diagnosing multiple myeloma, and the sensitivity, specificity, and accuracy under the optimal cut-off were determined by Youden index (sensitivity + specificity −1).

Results

A total of 32 and MNBD patients and 64 control patients were included. The total number of ROIs outlined included MNBD group (n = 493) and control group (n = 986). For all vertebrae, DFat(HAP) got average performance in the diagnosis of MNBD (AUC = 0.733, p < 0.001) with a cut-off value of 958 (mg/cm3); the sensitivity, specificity, and accuracy were 58.8 %, 77.8 %, and 71.7 %, respectively. Regarding segment analysis, the diagnostic performance was good for all (AUC, 0.803–0.837; p < 0.001) but the UPT segment (AUC = 0.692, p = 0.002). The optimal diagnostic cut-off values for the MLT, TL, and MLL vertebrae were 955 mg/cm3, 947 mg/cm3, and 947 mg/cm3, respectively; the sensitivity, specificity, and accuracy were 80.0 %-87.5 %, 71.9 %-82.6 %, and 77.1 %-81.6 %, respectively.

Conclusion

DECT was effective for detecting MNBD, and better diagnostic results can be obtained by grouping different spine segments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
2.90%
发文量
50
审稿时长
34 days
期刊介绍: The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer. As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject. The areas covered by the journal include: Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment) Preclinical models of metastasis Bone microenvironment in cancer (stem cell, bone cell and cancer interactions) Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics) Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management) Bone imaging (clinical and animal, skeletal interventional radiology) Bone biomarkers (clinical and translational applications) Radiotherapy and radio-isotopes Skeletal complications Bone pain (mechanisms and management) Orthopaedic cancer surgery Primary bone tumours Clinical guidelines Multidisciplinary care Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.
期刊最新文献
Clinical decision-making in bone cancer care management and forecast of ICU needs based on computed tomography Progression of vertebral fractures in metastatic melanoma and non-small cell lung cancer patients given immune checkpoint inhibitors Is surgery without curettage effective for periacetabular Metastasis? Insights from a survival study of 93 patients Bone density measurement in patients with spinal metastatic tumors using chest quantitative CT deep learning model Deep bone oncology Diagnostics: Computed tomography based Machine learning for detection of bone tumors from breast cancer metastasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1