Minh-Trang Huynh Pham , Art Wei Yao Ang , Truong-Giang Vo , Tomohiro Hayashi , Chia-Ying Chiang
{"title":"释放混合电价氧化银的潜力,通过电化学方法将 5-羟甲基糠醛转化为有价值的产品","authors":"Minh-Trang Huynh Pham , Art Wei Yao Ang , Truong-Giang Vo , Tomohiro Hayashi , Chia-Ying Chiang","doi":"10.1016/j.mtsust.2024.100992","DOIUrl":null,"url":null,"abstract":"<div><div>The burgeoning interest in the electrocatalytic conversion of biomass-derived compounds, exemplified by 5-hydroxymethylfurfural (HMF), into economically valuable products underscores the significance of such studies. Within this context, the electrocatalytic oxidation of HMF into 2,5-diformylfuran (DFF) using the mixed-valence silver (I, III) oxide (AgO) as the catalyst is presented for the first time. A thorough investigation has been carried out to explore the complex factors influencing the electrochemical transformation of the HMF to DFF, involving applied potentials, reactant concentrations, and the significant implications of mass transfer phenomena. Under optimized conditions, DFF, one of the highest value-added intermediates, can be produced with selectivity as high as 54%. Additionally, a yield of 10.8 μmol cm<sup>−2</sup> h<sup>−1</sup> was obtained under mild basic condition. Another pivotal aspect of this work involves meticulously examining the reaction process, bolstered by a comprehensive analytical approach that integrates high-performance liquid chromatography (HPLC), and <em>operando</em> Raman spectroscopy. The amalgamation of <em>operando</em> Raman spectroscopy with advanced simulation techniques represents a novel endeavor, offering a groundbreaking pathway to unravel the complexities inherent in these compounds and contribute substantially to the understanding of HMF oxidation and its intermediates. By looking closely at the catalyst surface during the reaction, a valuable insight into the steps involved was developed, helping in proposing an in-depth reaction pathway.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100992"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the potential of mixed-valence silver oxide for electrochemical valorization of 5-hydroxymethylfurfural into valuable products\",\"authors\":\"Minh-Trang Huynh Pham , Art Wei Yao Ang , Truong-Giang Vo , Tomohiro Hayashi , Chia-Ying Chiang\",\"doi\":\"10.1016/j.mtsust.2024.100992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The burgeoning interest in the electrocatalytic conversion of biomass-derived compounds, exemplified by 5-hydroxymethylfurfural (HMF), into economically valuable products underscores the significance of such studies. Within this context, the electrocatalytic oxidation of HMF into 2,5-diformylfuran (DFF) using the mixed-valence silver (I, III) oxide (AgO) as the catalyst is presented for the first time. A thorough investigation has been carried out to explore the complex factors influencing the electrochemical transformation of the HMF to DFF, involving applied potentials, reactant concentrations, and the significant implications of mass transfer phenomena. Under optimized conditions, DFF, one of the highest value-added intermediates, can be produced with selectivity as high as 54%. Additionally, a yield of 10.8 μmol cm<sup>−2</sup> h<sup>−1</sup> was obtained under mild basic condition. Another pivotal aspect of this work involves meticulously examining the reaction process, bolstered by a comprehensive analytical approach that integrates high-performance liquid chromatography (HPLC), and <em>operando</em> Raman spectroscopy. The amalgamation of <em>operando</em> Raman spectroscopy with advanced simulation techniques represents a novel endeavor, offering a groundbreaking pathway to unravel the complexities inherent in these compounds and contribute substantially to the understanding of HMF oxidation and its intermediates. By looking closely at the catalyst surface during the reaction, a valuable insight into the steps involved was developed, helping in proposing an in-depth reaction pathway.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"28 \",\"pages\":\"Article 100992\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234724003282\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003282","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Unlocking the potential of mixed-valence silver oxide for electrochemical valorization of 5-hydroxymethylfurfural into valuable products
The burgeoning interest in the electrocatalytic conversion of biomass-derived compounds, exemplified by 5-hydroxymethylfurfural (HMF), into economically valuable products underscores the significance of such studies. Within this context, the electrocatalytic oxidation of HMF into 2,5-diformylfuran (DFF) using the mixed-valence silver (I, III) oxide (AgO) as the catalyst is presented for the first time. A thorough investigation has been carried out to explore the complex factors influencing the electrochemical transformation of the HMF to DFF, involving applied potentials, reactant concentrations, and the significant implications of mass transfer phenomena. Under optimized conditions, DFF, one of the highest value-added intermediates, can be produced with selectivity as high as 54%. Additionally, a yield of 10.8 μmol cm−2 h−1 was obtained under mild basic condition. Another pivotal aspect of this work involves meticulously examining the reaction process, bolstered by a comprehensive analytical approach that integrates high-performance liquid chromatography (HPLC), and operando Raman spectroscopy. The amalgamation of operando Raman spectroscopy with advanced simulation techniques represents a novel endeavor, offering a groundbreaking pathway to unravel the complexities inherent in these compounds and contribute substantially to the understanding of HMF oxidation and its intermediates. By looking closely at the catalyst surface during the reaction, a valuable insight into the steps involved was developed, helping in proposing an in-depth reaction pathway.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.