Maria G. Fois , Zeinab N. Tahmasebi Birgani , Carmen López-Iglesias , Kèvin Knoops , Clemens van Blitterswijk , Stefan Giselbrecht , Pamela Habibović , Roman K. Truckenmüller
{"title":"集成血管床的微孔中三维细胞聚集体的体外血管化","authors":"Maria G. Fois , Zeinab N. Tahmasebi Birgani , Carmen López-Iglesias , Kèvin Knoops , Clemens van Blitterswijk , Stefan Giselbrecht , Pamela Habibović , Roman K. Truckenmüller","doi":"10.1016/j.mtbio.2024.101260","DOIUrl":null,"url":null,"abstract":"<div><div>Most human tissues possess vascular networks supplying oxygen and nutrients. Engineering of functional tissue and organ models or equivalents often require the integration of artificial vascular networks. Several approaches, such as organs on chips and three-dimensional (3D) bioprinting, have been pursued to obtain vasculature and vascularized tissues <em>in vitro</em>. This technical feasibility study proposes a new approach for the <em>in vitro</em> vascularization of 3D microtissues. For this, we thermoform arrays of round-bottom microwells into thin non-porous and porous polymer films/membranes and culture vascular beds on them from which endothelial sprouting occurs in a Matrigel-based 3D extra cellular matrix. We present two possible culture configurations for the microwell-integrated vascular beds. In the first configuration, human umbilical vein endothelial cells (HUVECs) grow on and sprout from the inner wall of the non-porous microwells. In the second one, HUVECs grow on the outer surface of the porous microwells and sprout through the pores toward the inside. These approaches are extended to lymphatic endothelial cells. As a proof of concept, we demonstrate the <em>in vitro</em> vascularization of spheroids from human mesenchymal stem cells and MG-63 human osteosarcoma cells. Our results show the potential of this approach to provide the spheroids with an abundant outer vascular network and the indication of an inner vasculature.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101260"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro vascularization of 3D cell aggregates in microwells with integrated vascular beds\",\"authors\":\"Maria G. Fois , Zeinab N. Tahmasebi Birgani , Carmen López-Iglesias , Kèvin Knoops , Clemens van Blitterswijk , Stefan Giselbrecht , Pamela Habibović , Roman K. Truckenmüller\",\"doi\":\"10.1016/j.mtbio.2024.101260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most human tissues possess vascular networks supplying oxygen and nutrients. Engineering of functional tissue and organ models or equivalents often require the integration of artificial vascular networks. Several approaches, such as organs on chips and three-dimensional (3D) bioprinting, have been pursued to obtain vasculature and vascularized tissues <em>in vitro</em>. This technical feasibility study proposes a new approach for the <em>in vitro</em> vascularization of 3D microtissues. For this, we thermoform arrays of round-bottom microwells into thin non-porous and porous polymer films/membranes and culture vascular beds on them from which endothelial sprouting occurs in a Matrigel-based 3D extra cellular matrix. We present two possible culture configurations for the microwell-integrated vascular beds. In the first configuration, human umbilical vein endothelial cells (HUVECs) grow on and sprout from the inner wall of the non-porous microwells. In the second one, HUVECs grow on the outer surface of the porous microwells and sprout through the pores toward the inside. These approaches are extended to lymphatic endothelial cells. As a proof of concept, we demonstrate the <em>in vitro</em> vascularization of spheroids from human mesenchymal stem cells and MG-63 human osteosarcoma cells. Our results show the potential of this approach to provide the spheroids with an abundant outer vascular network and the indication of an inner vasculature.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"29 \",\"pages\":\"Article 101260\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003211\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003211","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
In vitro vascularization of 3D cell aggregates in microwells with integrated vascular beds
Most human tissues possess vascular networks supplying oxygen and nutrients. Engineering of functional tissue and organ models or equivalents often require the integration of artificial vascular networks. Several approaches, such as organs on chips and three-dimensional (3D) bioprinting, have been pursued to obtain vasculature and vascularized tissues in vitro. This technical feasibility study proposes a new approach for the in vitro vascularization of 3D microtissues. For this, we thermoform arrays of round-bottom microwells into thin non-porous and porous polymer films/membranes and culture vascular beds on them from which endothelial sprouting occurs in a Matrigel-based 3D extra cellular matrix. We present two possible culture configurations for the microwell-integrated vascular beds. In the first configuration, human umbilical vein endothelial cells (HUVECs) grow on and sprout from the inner wall of the non-porous microwells. In the second one, HUVECs grow on the outer surface of the porous microwells and sprout through the pores toward the inside. These approaches are extended to lymphatic endothelial cells. As a proof of concept, we demonstrate the in vitro vascularization of spheroids from human mesenchymal stem cells and MG-63 human osteosarcoma cells. Our results show the potential of this approach to provide the spheroids with an abundant outer vascular network and the indication of an inner vasculature.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).