Lucrezia Unterholzner , Juliane Stolz , Marieke van der Maaten-Theunissen , Katharina Liepe , Ernst van der Maaten
{"title":"德国欧洲山毛榉的树木生长、气候敏感性和对干旱的反应受场地条件而非原产地的影响","authors":"Lucrezia Unterholzner , Juliane Stolz , Marieke van der Maaten-Theunissen , Katharina Liepe , Ernst van der Maaten","doi":"10.1016/j.foreco.2024.122308","DOIUrl":null,"url":null,"abstract":"<div><div>Ongoing climate change and associated extreme events strongly impact the growth and vitality of forest ecosystems in Europe. Because of its’ high drought sensitivity, European beech, which is considered as climax tree species in large parts of Central Europe, may specifically suffer. Hence, recent studies increasingly focus on the resistance and resilience of beech growth to climate change. Intra-specific variations in growth responses by comparing different beech provenances, however, received less attention, as did the question whether provenance selection can be used to mitigate potential future negative impacts of climate change. Therefore, we here investigated 24 provenances belonging to the International Beech Provenance Trial growing at three sites in Germany along a latitudinal gradient (study sites are referred to as ’North’, ‘Center’, ‘South’). Specifically, we compared tree-ring width (TRW), diameter breast height (DBH), climate-growth relationships, as well as drought resistance and resilience in the extreme years 2003 and 2018. Large differences in growth performance were observed between the three study sites. At site North, beech trees showed the highest DBH and TRW. Tree growth was predominantly driven by previous-year October and current-year winter temperature, whereas growth at sites Center and South was significantly impacted by summer SPEI and constrained by precipitation in late winter and early June, respectively. Overall, drought responses in 2003 were less variable than in 2018. We found increasing resistance and decreasing resilience from the wetter North to the drier South, but with minimal differences between the Center and the South. Whereas differences between study sites were large, provenance differentiation within sites was comparably low, substantiating that beech is a highly plastic tree species. Even though some provenances were found to perform slightly better or worse, differences were not statistically significant and show unclear patterns. Hence, we conclude that climate change will affect beech forests in Europe mainly depending upon site conditions, and that provenance selection may not ensure superior growth performance.</div></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":"572 ","pages":"Article 122308"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Site conditions rather than provenance drive tree growth, climate sensitivity and drought responses in European beech in Germany\",\"authors\":\"Lucrezia Unterholzner , Juliane Stolz , Marieke van der Maaten-Theunissen , Katharina Liepe , Ernst van der Maaten\",\"doi\":\"10.1016/j.foreco.2024.122308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ongoing climate change and associated extreme events strongly impact the growth and vitality of forest ecosystems in Europe. Because of its’ high drought sensitivity, European beech, which is considered as climax tree species in large parts of Central Europe, may specifically suffer. Hence, recent studies increasingly focus on the resistance and resilience of beech growth to climate change. Intra-specific variations in growth responses by comparing different beech provenances, however, received less attention, as did the question whether provenance selection can be used to mitigate potential future negative impacts of climate change. Therefore, we here investigated 24 provenances belonging to the International Beech Provenance Trial growing at three sites in Germany along a latitudinal gradient (study sites are referred to as ’North’, ‘Center’, ‘South’). Specifically, we compared tree-ring width (TRW), diameter breast height (DBH), climate-growth relationships, as well as drought resistance and resilience in the extreme years 2003 and 2018. Large differences in growth performance were observed between the three study sites. At site North, beech trees showed the highest DBH and TRW. Tree growth was predominantly driven by previous-year October and current-year winter temperature, whereas growth at sites Center and South was significantly impacted by summer SPEI and constrained by precipitation in late winter and early June, respectively. Overall, drought responses in 2003 were less variable than in 2018. We found increasing resistance and decreasing resilience from the wetter North to the drier South, but with minimal differences between the Center and the South. Whereas differences between study sites were large, provenance differentiation within sites was comparably low, substantiating that beech is a highly plastic tree species. Even though some provenances were found to perform slightly better or worse, differences were not statistically significant and show unclear patterns. Hence, we conclude that climate change will affect beech forests in Europe mainly depending upon site conditions, and that provenance selection may not ensure superior growth performance.</div></div>\",\"PeriodicalId\":12350,\"journal\":{\"name\":\"Forest Ecology and Management\",\"volume\":\"572 \",\"pages\":\"Article 122308\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecology and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378112724006200\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112724006200","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Site conditions rather than provenance drive tree growth, climate sensitivity and drought responses in European beech in Germany
Ongoing climate change and associated extreme events strongly impact the growth and vitality of forest ecosystems in Europe. Because of its’ high drought sensitivity, European beech, which is considered as climax tree species in large parts of Central Europe, may specifically suffer. Hence, recent studies increasingly focus on the resistance and resilience of beech growth to climate change. Intra-specific variations in growth responses by comparing different beech provenances, however, received less attention, as did the question whether provenance selection can be used to mitigate potential future negative impacts of climate change. Therefore, we here investigated 24 provenances belonging to the International Beech Provenance Trial growing at three sites in Germany along a latitudinal gradient (study sites are referred to as ’North’, ‘Center’, ‘South’). Specifically, we compared tree-ring width (TRW), diameter breast height (DBH), climate-growth relationships, as well as drought resistance and resilience in the extreme years 2003 and 2018. Large differences in growth performance were observed between the three study sites. At site North, beech trees showed the highest DBH and TRW. Tree growth was predominantly driven by previous-year October and current-year winter temperature, whereas growth at sites Center and South was significantly impacted by summer SPEI and constrained by precipitation in late winter and early June, respectively. Overall, drought responses in 2003 were less variable than in 2018. We found increasing resistance and decreasing resilience from the wetter North to the drier South, but with minimal differences between the Center and the South. Whereas differences between study sites were large, provenance differentiation within sites was comparably low, substantiating that beech is a highly plastic tree species. Even though some provenances were found to perform slightly better or worse, differences were not statistically significant and show unclear patterns. Hence, we conclude that climate change will affect beech forests in Europe mainly depending upon site conditions, and that provenance selection may not ensure superior growth performance.
期刊介绍:
Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world.
A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers.
We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include:
1. Clear connections between the ecology and management of forests;
2. Novel ideas or approaches to important challenges in forest ecology and management;
3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023);
4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript.
The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.