{"title":"河豚毒素和河豚毒素结合蛋白(PSTBP)同源物在四种泷鱼类血浆中的生化特性比较:具有三个和两个串联重复脂质体结构域的热稳定PSTBP同源物在泷鱼属中的保守性","authors":"Yafei Zhang , Mikinori Ueno , Ryohei Tatsuno , Tomohiro Takatani , Yohei Shimasaki , Kazunari Arima , Mary Grace Sedanza , Kenichi Yamaguchi , Yuji Oshima , Osamu Arakawa","doi":"10.1016/j.cbpc.2024.110049","DOIUrl":null,"url":null,"abstract":"<div><div>To study the relationship between domain characteristics of pufferfish saxitoxin and tetrodotoxin binding protein (PSTBP) proteoforms and their thermal stability, a comparative biochemical characterization of PSTBPs from the plasma of four <em>Takifugu</em> species (<em>T. flavipterus</em>, <em>T. pardalis</em>, <em>T. alboplumbeus</em> and <em>T. rubripes</em>) was conducted by Western blot analysis. The heat-tolerance tetrodotoxin (TTX)-binding ability of PSTBP proteoforms in <em>T. rubripes</em> plasma was verified by ultrafiltration and liquid chromatography tandem mass spectrometry (LC-MS/MS). These results suggest that the heat-stable PSTBP proteoforms, composed of three and two tandemly repeated lipocalin domains, are genetically conserved and ubiquitous in the genus <em>Takifugu</em>. This study builds on our knowledge of the structural and functional properties of PSTBP proteoforms, which is vital for understanding how toxins are transmitted and accumulate in organisms and is essential for evaluating the potential risks of toxins in seafood.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"287 ","pages":"Article 110049"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative biochemical characterization of pufferfish saxitoxin and tetrodotoxin-binding protein (PSTBP) homologs in the plasma from four Takifugu species: Conservation of heat-stable PSTBP orthologs having three and two tandemly repeated lipocalin domains in genus Takifugu\",\"authors\":\"Yafei Zhang , Mikinori Ueno , Ryohei Tatsuno , Tomohiro Takatani , Yohei Shimasaki , Kazunari Arima , Mary Grace Sedanza , Kenichi Yamaguchi , Yuji Oshima , Osamu Arakawa\",\"doi\":\"10.1016/j.cbpc.2024.110049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To study the relationship between domain characteristics of pufferfish saxitoxin and tetrodotoxin binding protein (PSTBP) proteoforms and their thermal stability, a comparative biochemical characterization of PSTBPs from the plasma of four <em>Takifugu</em> species (<em>T. flavipterus</em>, <em>T. pardalis</em>, <em>T. alboplumbeus</em> and <em>T. rubripes</em>) was conducted by Western blot analysis. The heat-tolerance tetrodotoxin (TTX)-binding ability of PSTBP proteoforms in <em>T. rubripes</em> plasma was verified by ultrafiltration and liquid chromatography tandem mass spectrometry (LC-MS/MS). These results suggest that the heat-stable PSTBP proteoforms, composed of three and two tandemly repeated lipocalin domains, are genetically conserved and ubiquitous in the genus <em>Takifugu</em>. This study builds on our knowledge of the structural and functional properties of PSTBP proteoforms, which is vital for understanding how toxins are transmitted and accumulate in organisms and is essential for evaluating the potential risks of toxins in seafood.</div></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\"287 \",\"pages\":\"Article 110049\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624002175\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624002175","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comparative biochemical characterization of pufferfish saxitoxin and tetrodotoxin-binding protein (PSTBP) homologs in the plasma from four Takifugu species: Conservation of heat-stable PSTBP orthologs having three and two tandemly repeated lipocalin domains in genus Takifugu
To study the relationship between domain characteristics of pufferfish saxitoxin and tetrodotoxin binding protein (PSTBP) proteoforms and their thermal stability, a comparative biochemical characterization of PSTBPs from the plasma of four Takifugu species (T. flavipterus, T. pardalis, T. alboplumbeus and T. rubripes) was conducted by Western blot analysis. The heat-tolerance tetrodotoxin (TTX)-binding ability of PSTBP proteoforms in T. rubripes plasma was verified by ultrafiltration and liquid chromatography tandem mass spectrometry (LC-MS/MS). These results suggest that the heat-stable PSTBP proteoforms, composed of three and two tandemly repeated lipocalin domains, are genetically conserved and ubiquitous in the genus Takifugu. This study builds on our knowledge of the structural and functional properties of PSTBP proteoforms, which is vital for understanding how toxins are transmitted and accumulate in organisms and is essential for evaluating the potential risks of toxins in seafood.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.