Shujun Li , Peng Wang , Qian Zhang , Jiashuo Li , Zhi Cao , Wen Li , Wei-qiang Chen
{"title":"利用多源地理数据监测中国太阳能电站在用库存和材料回收潜力","authors":"Shujun Li , Peng Wang , Qian Zhang , Jiashuo Li , Zhi Cao , Wen Li , Wei-qiang Chen","doi":"10.1016/j.resconrec.2024.107920","DOIUrl":null,"url":null,"abstract":"<div><div>To combat global climate change requires fast deployment of photovoltaics (PV), especially for Belt and Road Initiative (BRI) countries. However, PV systems are highly material-intensive with significant waste, underscoring the need for high-resolution material stock mapping to enhance future recycling. Here, we develop an integrated framework that combines multi-source geographical data, to monitor PV material stocks at facility level in China during 2010–2019. The results indicate nearly 86 % (108 GW) of installed capacity concentrated in northwest, north, central, and east China in 2019, with total aluminum exceeding 1.8 million tonnes (Mt), followed by silicon at 87 kilo tonnes (kt), copper at 81 kt, and silver at 6 kt, almost half the PV installed capacity (61.4 GW) with 5.6 Mt PV panels are over 50 km from urban areas, emphasizing the necessity of high-resolution PV panel monitoring and its application in managing those emerging but diverse waste sources.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"212 ","pages":"Article 107920"},"PeriodicalIF":11.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring China's solar power plant in-use stocks and material recycling potentials using multi-source geographical data\",\"authors\":\"Shujun Li , Peng Wang , Qian Zhang , Jiashuo Li , Zhi Cao , Wen Li , Wei-qiang Chen\",\"doi\":\"10.1016/j.resconrec.2024.107920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To combat global climate change requires fast deployment of photovoltaics (PV), especially for Belt and Road Initiative (BRI) countries. However, PV systems are highly material-intensive with significant waste, underscoring the need for high-resolution material stock mapping to enhance future recycling. Here, we develop an integrated framework that combines multi-source geographical data, to monitor PV material stocks at facility level in China during 2010–2019. The results indicate nearly 86 % (108 GW) of installed capacity concentrated in northwest, north, central, and east China in 2019, with total aluminum exceeding 1.8 million tonnes (Mt), followed by silicon at 87 kilo tonnes (kt), copper at 81 kt, and silver at 6 kt, almost half the PV installed capacity (61.4 GW) with 5.6 Mt PV panels are over 50 km from urban areas, emphasizing the necessity of high-resolution PV panel monitoring and its application in managing those emerging but diverse waste sources.</div></div>\",\"PeriodicalId\":21153,\"journal\":{\"name\":\"Resources Conservation and Recycling\",\"volume\":\"212 \",\"pages\":\"Article 107920\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Conservation and Recycling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921344924005135\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924005135","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Monitoring China's solar power plant in-use stocks and material recycling potentials using multi-source geographical data
To combat global climate change requires fast deployment of photovoltaics (PV), especially for Belt and Road Initiative (BRI) countries. However, PV systems are highly material-intensive with significant waste, underscoring the need for high-resolution material stock mapping to enhance future recycling. Here, we develop an integrated framework that combines multi-source geographical data, to monitor PV material stocks at facility level in China during 2010–2019. The results indicate nearly 86 % (108 GW) of installed capacity concentrated in northwest, north, central, and east China in 2019, with total aluminum exceeding 1.8 million tonnes (Mt), followed by silicon at 87 kilo tonnes (kt), copper at 81 kt, and silver at 6 kt, almost half the PV installed capacity (61.4 GW) with 5.6 Mt PV panels are over 50 km from urban areas, emphasizing the necessity of high-resolution PV panel monitoring and its application in managing those emerging but diverse waste sources.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.