Zilong Xia , Yingjie Li , Shanchuan Guo , Xingang Zhang , Xiaoquan Pan , Hong Fang , Ruishan Chen , Peijun Du
{"title":"利用卫星观测评估风电场项目中的森林扰动和土壤侵蚀情况","authors":"Zilong Xia , Yingjie Li , Shanchuan Guo , Xingang Zhang , Xiaoquan Pan , Hong Fang , Ruishan Chen , Peijun Du","doi":"10.1016/j.resconrec.2024.107934","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of wind farms, involving road construction and wind turbine installation, severely disrupts natural landscapes. Wind energy expansion in global forested areas has unclear impacts on local forests and ecosystem services. Due to a lack of information on internal road distribution and deployment dates, few studies have assessed forest disturbances caused by wind farms. Environmental issues like vegetation destruction and soil erosion may be overlooked. To address this, we integrated multi-source spaceborne observations to identify deployment dates and road distributions of forest wind farms and mapped related forest disturbances and soil erosion changes. Six global locations were tested, showing over 80 % accuracy. Disturbance intensity ranged from 1.5 to 6.5 ha/MW, with NDVI decreasing by 0.03 to 0.33 in disturbed forest regions. The average soil erosion increase per unit area due to road construction ranged from 24.74 to 274.33 t/hm<sup>−1</sup> <em>a</em><sup>−1</sup>, while wind turbine construction caused an average soil erosion increase ranging from 26.52 to 26.52 to 263.46 t/hm<sup>−1</sup> <em>a</em><sup>−1</sup>. Road construction is the primary cause of forest disturbance, with greater soil erosion increases in mountainous than in plain forests. This method enhances monitoring and understanding of wind farms' environmental impacts.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"212 ","pages":"Article 107934"},"PeriodicalIF":11.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of forest disturbance and soil erosion in wind farm project using satellite observations\",\"authors\":\"Zilong Xia , Yingjie Li , Shanchuan Guo , Xingang Zhang , Xiaoquan Pan , Hong Fang , Ruishan Chen , Peijun Du\",\"doi\":\"10.1016/j.resconrec.2024.107934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The construction of wind farms, involving road construction and wind turbine installation, severely disrupts natural landscapes. Wind energy expansion in global forested areas has unclear impacts on local forests and ecosystem services. Due to a lack of information on internal road distribution and deployment dates, few studies have assessed forest disturbances caused by wind farms. Environmental issues like vegetation destruction and soil erosion may be overlooked. To address this, we integrated multi-source spaceborne observations to identify deployment dates and road distributions of forest wind farms and mapped related forest disturbances and soil erosion changes. Six global locations were tested, showing over 80 % accuracy. Disturbance intensity ranged from 1.5 to 6.5 ha/MW, with NDVI decreasing by 0.03 to 0.33 in disturbed forest regions. The average soil erosion increase per unit area due to road construction ranged from 24.74 to 274.33 t/hm<sup>−1</sup> <em>a</em><sup>−1</sup>, while wind turbine construction caused an average soil erosion increase ranging from 26.52 to 26.52 to 263.46 t/hm<sup>−1</sup> <em>a</em><sup>−1</sup>. Road construction is the primary cause of forest disturbance, with greater soil erosion increases in mountainous than in plain forests. This method enhances monitoring and understanding of wind farms' environmental impacts.</div></div>\",\"PeriodicalId\":21153,\"journal\":{\"name\":\"Resources Conservation and Recycling\",\"volume\":\"212 \",\"pages\":\"Article 107934\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Conservation and Recycling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921344924005275\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924005275","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Assessment of forest disturbance and soil erosion in wind farm project using satellite observations
The construction of wind farms, involving road construction and wind turbine installation, severely disrupts natural landscapes. Wind energy expansion in global forested areas has unclear impacts on local forests and ecosystem services. Due to a lack of information on internal road distribution and deployment dates, few studies have assessed forest disturbances caused by wind farms. Environmental issues like vegetation destruction and soil erosion may be overlooked. To address this, we integrated multi-source spaceborne observations to identify deployment dates and road distributions of forest wind farms and mapped related forest disturbances and soil erosion changes. Six global locations were tested, showing over 80 % accuracy. Disturbance intensity ranged from 1.5 to 6.5 ha/MW, with NDVI decreasing by 0.03 to 0.33 in disturbed forest regions. The average soil erosion increase per unit area due to road construction ranged from 24.74 to 274.33 t/hm−1a−1, while wind turbine construction caused an average soil erosion increase ranging from 26.52 to 26.52 to 263.46 t/hm−1a−1. Road construction is the primary cause of forest disturbance, with greater soil erosion increases in mountainous than in plain forests. This method enhances monitoring and understanding of wind farms' environmental impacts.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.